References

  1. Ahmad M.S., Mehmood Q., Nazeer W., Haq A.U. An application of a hypergeometric distribution series on certain analytic functions. Sci.Int. (Lahore) 2015, 27 (4), 2989–2992.
  2. Altinkaya Ş., Yalçin S. Poisson distribution series for analytic univalent functions. Complex Anal. Oper. Theory 2018, 12 (5), 1315–1319. doi:10.1007/s11785-018-0764-y
  3. Altintas O., Owa S. On subclasses of univalent functions with negative coefficients. Pusan Kyŏngnam Math.J. 1988, 4, 41–56.
  4. Bajpai D. A study of univalent functions associated with distribution series and \(q\)-calculus. M. Phil. Diss. CSJM University, Kanpur, India, 2016.
  5. Bulboaca T., Murugusundaramoorthy G. Univalent functions with positive coefficients involving Pascal distribution series. Commun. Korean Math. Soc. 2020, 35 (3), 867–877. doi:10.4134/CKMS.c190413
  6. Frasin B.A. Two subclasses of analytic functions associated with Poisson distribution. Turkish J. Ineq. 2020, 4 (1), 25–30.
  7. Nazeer W., Mehmood Q., Kang S.M., Haq A.U. An application of Binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26 (1), 11–17.
  8. Porwal S. An application of a Poisson distribution series on certain analytic functions. J. Complex Anal. 2014, article ID 984135. doi:10.1155/2014/984135
  9. Porwal S., Dixit K.K. An application of generalized Bessel functions on certain analytic functions. Acta Univ. M. Belii Ser. Math. 2013, 21, 51–56.
  10. Porwal S. Generalized distribution and its geometric properties associated with univalent functions. J. Complex Anal. 2018, article ID 8654506. doi:10.1155/2018/8654506
  11. Porwal S. Confluent hypergeometric distribution and its applications on certain classes of univalent functions of conic regions. Kyungpook Math. J. 2018, 58 (3), 495–505. doi:10.5666/KMJ.2018.58.3.495
  12. Porwal S., Gupta A. Some properties of convolution for hypergeometric distribution type series on certain analytic univalent functions. Acta Univ. Apulensis Math. Inform. 2018, 56, 69–80.
  13. Robertson M.I.S. On the theory of univalent functions. Ann. Math. 1936, 37 (2), 374–408. doi:10.2307/1968451
  14. Silverman H. Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 1975, 51, 109–116. doi:10.1090/S0002-9939-1975-0369678-0
  15. Wanas A.K., Khuttar J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4 (1), 71–82. doi:10.34198/ejms.4120.7182