References
- Acar O., Erdogan E. Some fixed point results for almost contraction on orthogonal metric space. Creat. Math. Inform. 2022, 31 (2), 147–153. doi:10.37193/CMI.2022.02.01
- Acar Ö., Erdoğan E., Ozkapu A.S. Generalized integral type mappings on orthogonal metric spaces. Carpathian Math. Publ. 2022, 14 (2), 485–492. doi:10.15330/cmp.14.2.485-492
- Alber Y.I., Guerre-Delabriere S. Principle of weakly contractive maps in Hilbert spaces. In: Gohberg I., Lyubich Y. (Eds.) New Results in Operator Theory and Its Applications, 98. Birkhäuser, Basel, 1997.
- Babu G.V.R., Lalitha B., Sandhya M.L. Common fixed point theorems involving two generalized altering distance functions in four variables. Proc. Jangjeon Math. Soc. 2007, 10 (1), 83–93.
- Boyd D.W., Wong S.W. On nonlinear contractions. Proc. Amer. Math. Soc. 1969, 20 (2), 458–464. doi:10.1090/S0002-9939-1969-0239559-9
- Ciric L.B. A generalization of Banach’s principle. Proc. Amer. Math. Soc. 1974, 45, 267–273. doi:10.2307/2040075
- Gordji M.E., Habibi H. Fixed point theory in generalized orthogonal metric space. J. Linear Topol. Algebra 2017, 6 (3), 251–260.
- Gordji M.E., Rameani M., De La Sen M., Cho Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 2017, 18 (2), 569–578. doi:10.24193/fpt-ro.2017.2.45
- Gungor N.B. Extensions of orthogonal p-contraction on orthogonal metric spaces. Symmetry 2022, 14 (4), 746. doi:10.3390/sym14040746
- Gungor N.B. Some fixed point results via auxiliary functions on orthogonal metric spaces and application to homotopy. AIMS Mathematics 2022, 7 (8), 14861–14874. doi:10.3934/math.2022815
- Gungor N.B. Some fixed point theorems on orthogonal metric spaces via extensions of orthogonal contractions. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 2022, 71 (2), 481–489. doi:10.31801/cfsuasmas.970219
- Gungor N.B., Turkoglu D. Fixed point theorems on orthogonal metric spaces via altering distance functions. AIP Conf. Proc. 2019, 2183 (1), 040011. doi:10.1063/1.5136131
- Hardy G.E., Rogers T.D. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 1973, 16, 201–206. doi:10.4153/CMB-1973-036-0
- Kannan R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 10, 71–76.
- Khan M.S., Swaleh M., Sessa S. Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 1984, 30 (1), 1–9.
- Kübra O. Coupled Fixed Point Results on Orthogonal Metric Spaces with Application to Nonlinear Integral Equations. Hacet. J. Math. Stat. 2023, 52 (3), 619–629. doi:10.15672/hujms.1091097
- Naidu S.V.R. Some fixed point theorems in metric spaces by altering distances. Czechoslovak Math. J. 2003, 53 (1), 205–212.
- Nallaselli G., Baazeem A.S., Gnanaprakasam A.J., Mani G., Javed K., Ameer E., Mlaiki N. Fixed Point Theorems via Orthogonal Convex Contraction in Orthogonal \(\flat\)-Metric Spaces and Applications. Axioms 2023, 12 (2), 143. doi:10.3390/axioms12020143
- Özlem A., Özkapu A.S. Multivalued rational type F-contraction on orthogonal metric space. AIMS Math. Found. Comp. 2023, 6 (3), 303–312. doi:10.3934/mfc.2022026
- Reich S. Kannan’s fixed point theorem. Boll. Unione Mat. Ital. 1971, 4 (4), 1–11.
- Rhoades B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47 (4), 2683–2693. doi:10.1016/S0362-546X(01)00388-1
- Sastry K.P.R., Babu G.V.R. Some fixed point theorems by altering distances between the points. Indian J. Pure Appl. Math. 1999, 30 (6), 641–647.
- Sastry K.P.R., Naidu S.V.R., Babu G.V.R., Naidu G.A. Generalization of common fixed point theorems for weakly commuting maps by altering distances. Tamkang J. Math. 2000, 31 (3), 243–250. doi:10.5556/j.tkjm.31.2000.399
- Sawangsup K., Sintunavarat W. Fixed point results for orthogonal Z-contraction mappings in O-complete metric space. Int. J. Appl. Phys. Math 2020, 10 (1), 33–40. doi:10.17706/ijapm.2020.10.1.33-40
- Senapati T., Dey L.K., Damjanovic B., Chanda A. New fixed point results in orthogonal metric spaces with an application. Kragujevac J. Math. 2018, 42 (4), 505–516. doi:10.5937/KGJMATH1804505S
- Shaeri M.R., Asl J.H., Gordji M.E., Refaghat H. Common fixed point (\(\alpha_*\)-\(\psi\)-\(\beta_i\))-contractive set-valued mappings on orthogonal Branciari \(S_ {b}\)-metric space. Int. J. Nonlinear Anal. Appl. 2023, 14 (12), 105–120. doi:10.22075/ijnaa.2023.27426.3597