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Some fixed point theorems for expansiveness
of orthogonal p-contractiveness

Gungor N.B.

Orthogonal set and orthogonal metric spaces are two new notions, which are defined in 2017. In
this type metric spaces, a generalization of Banach fixed point theorem is presented. Then in 2019,
new fixed point theorems are investigated by using altering distance functions. In this paper, fixed
point theorems for expansiveness of orthogonal p-contractiveness via altering distance functions are
given inspired by [Rhoades B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47
(4), 2683-2693] and [Gordji M.E., Rameani M., De La Sen M., Cho Y.J. On orthogonal sets and Banach
fixed point theorem. Fixed Point Theory 2017, 18 (2), 569-578]. Further, consequences and a restrictive
example are offered.
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1 Introduction and preliminaries

An important theorem, which is known as Banach contraction principle, is proved by
S. Banach in 1922. This principle has been accepted as starting of the fixed point theory in
metric spaces.

Some generalizations of Banach contraction principle have been studied on complete metric
(see [5,6,13,14,20]). These studies were developed using two techniques. The first technique
is to change the contraction conditions of the mappings and the second technique is to replace
the studied metric space with another one.

Considering the first technique, the research of the metric fixed point theory to a new cate-
gory by presenting a control function is given by M.S. Khan et. al. [15] in 1984.

Definition 1 ([15]). If ¢ : [0,00) — [0, 00) is a function, which satisfies the following conditions
(i) ¢(s) is nondecreasing and continuous,
(ii) s=0 < ¢(s) =0,

then ¢ is named altering distance function.

The whole family of altering distance functions will be denoted by A.
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Theorem 1 ([15]). Let (W, T) be a complete metric space, ¢ be an altering distance function and
< : W — W be a self mapping satistying the inequality

¢(z(ap, <)) < pe(t(p 1))
forall y,n € W and for some € (0,1). Then < has a unique fixed point.

After then, this type functions have been used in a lot of papers in metric fixed point theory
(see [4,17,22,23]).

In 1997, the subject of weak contractions is presented by Y.I. Alber and S. Guerre-Delabriere
[3], which is an another extension of the contraction principle. Also, B.E. Rhoades [21] enlarged
this notion to metric spaces in 2001.

Definition 2 ([21]). Let (W, T) be a metric space, ¢ be an altering distance function and
< : W — W be a self mapping satisfying

t(ap, <) < T(pn) —o(t(wn),
where yu, 11 € W. Then < is said to be weakly contractive mapping.

Theorem 2 ([21]). Let (W, T) be a complete metric space and < : W — W be a weakly contrac-
tive mapping. Then < has a unique fixed point.

As one of the results in the second technique, M.E. Gordji et. al. [8] defined the subject of an
orthogonal set and orthogonal metric spaces. After that, M.E. Gordji and H. Habibi [7] noticed
a new subject of generalized orthogonal metric space and they applied the obtained results to
show presence and uniqueness of solution of Cauchy problem for the first order differential
equation.

Very recently, on orthogonal metric space, N.B. Gungor and D. Turkoglu [12] noticed some
tixed point theorems via altering distance functions inspired by [15] and [8]. In 2022, presence
and uniqueness of fixed points of the generalizations of contraction principle via auxiliary
functions are proved and the homotopy application of the one of the corollaries is given by
N.B. Gungor [10].

In recent years, many research articles have presented fixed point theorems and their
applications in orthogonal metric spaces (see [1,2,9,11,16, 18,19, 24, 26]).

In this research paper, some fixed points theorems for the generalizations of contraction
principle via auxiliary functions are proved. Also, consequences and an illustrative example
are presented.

Let R,IR™, Z denote real numbers, positive real numbers and integers, respectively.

Definition 3 ([8]). Let W be a non-empty set, | be a binary relation defined on W. If binary
relation L fulfils the following condition

JupeW: (YyeW nyLu) or (VpeW ugLny), (1)

then (W, L) known as an orthogonal set (an O-set, for short). And i is named an orthogonal
element.

Example 1 ([7]). Let W = Z. Define x L y if there exists a € Z such that x = ay. One can see
that 0 L y forally € Z. Thus, (W, L) is an O-set.
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Definition 4 ([8]). If the following criteria
(VneNN n, Lny1) or (VneN n,41 L) (2)

is satisfied, then the sequence {1, } is called orthogonal sequence.
Similarly, if the criteria (2) is satisfied, then a Cauchy sequence {1, } is called to be an
orthogonally Cauchy sequence.

Definition 5 ([8]). Let (W, L) be an orthogonal set, T be a usual metric on W. In this case
(W, L, T) is called an orthogonal metric space.

Definition 6 ([8]). Let (W, L, T) be an orthogonal metric space. If every orthogonally Cauchy
sequence converges in W, then (W, L, T) is called to be a complete orthogonal metric space.

Definition 7 ([8]). Let (W, L, T) be an orthogonal metric space and < : W — W be a function.
If for each orthogonal sequence {1, } converging to 1 we have <1, — <117 as n — oo, then < is
named to be orthogonally continuous at 1.

If <1 is orthogonally continuous in each 7 € W, then < is orthogonally continuous on W.

Definition 8 ([8]). Let (W, L, T) be an orthogonal metric space and A € R, 0 < A < 1. A
function < : W — W is called to be orthogonal contraction with Lipschitz constant A if

(<, <) < At(p, 1)
for all u,n € W whenever u L 1.

Definition 9 ([8]). Let (W, L, T) be an orthogonal metric space. A function < : W — W is
named orthogonal preserving if <y 1 <1y whenever u L 7.

Remark 1. In [7], it is shown that the orthogonal continuity and orthogonal contraction no-
tations are weaker than the classical continuity and contraction notations in classical metric
spaces.

Theorem 3 ([8]). Let (W, L, T) be an orthogonal complete metric space and < : W — W be

orthogonal continuous, orthogonal contraction (with Lipschitz constant A, 0 < A < 1) and

orthogonal preserving. Afterwards <1 has a unique fixed point 7* € W and lgn <"(n) =n*
n—oo

forally € W.

In 2022, presence and uniqueness of fixed points of the generalizations of contraction prin-
ciple via auxiliary functions are proved and the homotopy application of the one of the corol-
laries is given by N.B. Gungor.

In [12], N.B. Gungor and D. Turkoglu presented the remarkable fixed point theorems on or-
thogonal metric spaces via altering distance functions. And then, in [10], N.B. Gungor proved
presence and uniqueness of fixed points of the generalizations of contraction principle via
auxiliary functions and gived the homotopy application of the one of the corollaries.

In 2018, T. Senapati et. al. [25] defined the orthogonal lower semi continuity and introduced
the concept w-distance in orthogonal metric space. Also they proved a fixed point theorem
which is the version of Banach fixed point theorem in orthogonal metric spaces owing to the
concept of w-distance.
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Definition 10 ([25]). Let (W, L, T) be an orthogonal metric space. A function < : W — [0, c0] is
said to be orthogonal lower semi continuous at 1 if for every orthogonal sequence {1, } converging

to 17, we have
liminf <(r,) > <(n).

n—oo

Remark 2. The authors of [25] gave an examples, which show orthogonal lower semi continu-
ity is weaker than orthogonal continuity and lower semi continuity.

Definition 11 ([25]). Let (W, L, T) be an orthogonal metric space. A functionp : WxW — [0, c0)
is said to be w-distance function on W if

(P1) p(p11) < p(p,8) +p(8,1) forany p, 6,11 € W,
(p2) p(u,-) : W x W — [0, 00) is orthogonal lower semi-continuous for any y € W,
(p3) forany e > 0 there exists v > 0 such that p(y,17) < vy and p(0,1) < v implyd(u,0) < e.

Lemma 1 ([25]). Let (W, L, T) be an orthogonal metric space and p : W x W — [0, ) be a
w-distance. Suppose {u,} and {y,} are two orthogonal sequences in W and u,1n,0 € W.
Let {u,} and {v,} be sequences of positive real numbers converging to 0. Then we have the
followings.

(i) Ifp (pn, 1) < uy and p (pn,0) < v, thenny = 0. Moreover, if p(u,17) = 0 and p(p,0) =0,
thenn = 6.

(ii) If p (pn,Mn) < uy and p (pn,0) < vy, theny, — 6 asn — oo.
(iii) If p (pn, hm) < uy for allm > n, then {u, } is an orthogonal Cauchy sequence in W.
(iv) Ifp (pn, 1) < un, then {p,} is an orthogonal Cauchy sequence in W.

Definition 12 ([25]). Let (W, L, T) be an orthogonal metric space and p : W x W — [0, 0) be
a w-distance. A mapping < : W — W is said to be an orthogonal p-contraction if there exists a
A € [0,1) such that

p(<p, <) < Ap(p,n)
forally,n € W withu L 5.

Remark 3. In [25], a remarkable example is given, which shows that orthogonal p-contraction
need not to be an orthogonal contraction.

Theorem 4 ([25]). Let (W, L, T) be an orthogonal complete metric space with a w-distance p.
If < is an orthogonal p-contractive, orthogonal preserving and orthogonal continuous self
mapping, then

(a) < has a unique fixed point u* € W,

(b) the Picard sequence <" (jt) converges to u* € W for every p € W.
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2 Main results

Theorem 5. Let (W, L, T) be an orthogonal complete metric space equipped with a w-dis-
tance p, <: W — W be a self map, ¢,b € A, L is transitive binary relation. Suppose that < is
orthogonal preserving self mapping satistying the inequality

c(p(ap <)) < ¢(M(,m)) =b(M(p, 1)) (3)
for all orthogonally related i, € W, where

M(p, ) = max { p(p, ), min { (e, <ape), p(n, <), p(<p, 1), p(<, )} -

In this case, there exists a point u* € W such that for any orthogonal element yy € W, the
iteration sequence {<1" (o)} converges to this point. Also, if < is orthogonal continuous at
u* € W, then u* € W is a fixed point of <.

Proof. Because (W, L) is an orthogonal set, condition (1) is fulfilled. Since < is a self mapping
on W, for any orthogonal element yp € W, u; € W can be choosen as y1 = <iyg. Thus,

po L <poV <po L po = mo L u1 VvV ur L po.
Then, if it is similarly proceeded
1 = <o, o = <y = <Ly, -, fn = <y = <o,
so {<"up} is an iteration sequence. O

If for any n € IN we have y, = p,41, then y, = <y, and so < has a fixed point.
Assume that p, # p,4q for all n € IN. Since < is orthogonal preserving, {<"pp} is an
orthogonal sequence. Now, we proceed to show that
lim p( <" po, <" ) = 0. (4)

n—oo

By using the inequality (3), we have
¢(p(<"po, <" o) ) = (p(<pta-1, 1))
<g ( max {P (Mn—1, Hn) , min {P (=1, ) P (Bons 1) P (B 1), P (Bt 10 i) } })

— b(maX{P (Hﬂ*l/ ]’l?l) , min {P (Hi’l*l/ ]’l?l) ’ P(Hn/ ]’lﬂJrl)r p (]’lnr ]’lnfl) P (]/l;thl, ]/ln) } }) ,

so that
¢ (P( <" po, <”+1M0)> <g <P( <", 4”;10)) — b(p( 9"y, <1”y0)> (5)

for any n € IN. Also
6(p(<" 1o, <" o) ) < 6 (p(<"~" o, <"ho) ) —b(p(<"~" po, <"ho) ) < (p(<"~" po, <"ho) ).

Therefore, owing to the monocity of ¢, the inequality p (<", <" 1ug) < p (<" Lo, <o)
is obtained for all # € IN. Thus, for the nonnegative decreasing sequence {p(<"ug, <" pip) }
there exists some r > 0 such that

lim p( <" po, <" pg) =r. (6)

n—oo
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Assume that r > 0. On letting n — oo in (5) besides using (6), we get

6(r) <g(r) —b(r),

which amounts to say that b(r) = 0. As, b is an altering distance function, r = 0, which is a
contradiction to nonzeroness of r yielding thereby

lim p( <" po, <" po) =0

n—oo

is obtained. Similarly, one can also show that

. 1
lim p(<"" po, <"o) = 0. (7)
Now, we continue to show
. n m _
dim p (<" po, <"po) = 0. ®)

Suppose (7) is untrue. Then we can find a d > 0 with sequences {m;} and {n,} such that
p( <" o, <" pug) > 9 forall se{1,2,...} 9)
wherein m; > ns. By (4) there exists sp € IN such that ns > sp implies
p( <™ o, <"+pp) < 0. (10)

Notice that in view of (9) and (10), ms # ng,1. We can assume that m; is minimum index
such that (9) holds, so that

p( <" po,<"uo) > 9 for r e {ngiq, neyo,..., ms—1},
which in view of (9) gives rise to

0 <0 <p(<™pup,<"u)
< p(<Q" po, <™ Mpg) + p (<™ g, <Mspg) < 0+ p( <™ g, <M pp),

so that
lim p( ' Ho, <]ms]/l0) = 0.

S— 00

Next, we show that

limsup p( <" g, <™ yg) =€ < 0.
S— 00

If limsup p (<" g, <™ 1y) = € > 9, then there exists {s,} such that

S§—00

limsup p( <" g, <" pg) = € > 0.
r—00

Since ¢ is continuous, nondecreasing mapping and also <1"sr g L <" ug, on using inequal-
ity (3), one gets

g(p( s g, <]m5r+1yo)) < g(M( <" g, <1"“Pl0)> — b<M( <™ po, <1msﬂo)) (11)
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with
M( <" kpo, <™ pp) = max {p (<" po, <"spp) , min { p( <™ po, <" up),
p (<" po, <" ),
p( <" o, <" po),
p(<" o, <" o) } |
implying thereby
SlLrEOM( <™ po, <" pp) = max{0,9} = o. (12)

Letting s — oo in (11) and using (12), we get

6(9) < ¢(e) =¢(9) —1(9) < ¢(9),
so that b(d) = 0 implying thereby d = 0, which is a contradiction. Hence,

limsup p( <" po, <" pg) < 9

S§—00

and we have
0 <0 <p(<™puo,<"u)
S P( q”s 1o, <]n5+1]/l0) +P( <]n5+1 1o, <]m5+1y0) +P( <ms+1 1o, <1m5}10)-

Therefore, owing to (4) and (7), we have

0<o< lim p( <" po, <" o)

ns+1 mg+1 ms+1

Ho) + lim p (<" o, <" pio)

S—00

< lim p( <" po, <" pg) + limsup p( <

S§—00 S—300

Ho, <

= limsup p( st Ho, <1m9+1}lo) <0,
§—00

which is a contradiction. Hence (8) holds. Owing to Lemma 1, {<"yo} is an orthogonal

Cauchy sequence in W. Since () is an orthogonal complete metric space, there exists p* such

that lgn <"up = p*. Now, assume that < is an orthogonal continuous at u*. In this case,
n—oo

lgn <"1y = <p*. By using orthogonal lower semi-continuity of p, we have
n—oo

p( <" o, ') < liminfp( <" o, <"jug) =,
p(<" po, <p") < liminfp( <" po, <" puo) = B

On using (8), we have lgn Ky = lgn Bn = 0. And then, in view of Lemma 1, y* is a fixed
n (e.9) n oo
point of <.

Lemma 2. Let (W, L,d) be an orthogonal complete metric space equipped with a w-distance p,
<: W — W be a self map, ¢,b € A. Suppose that

s(p(ap<m)) <g(M(un)) —b(M(p,1))

for all orthogonally related y,7 € W, where

M, 1) = max { p(u, ), min {p(e, ), pOr, <), p(<p, ), p(<inm) } -
If there exists a point u* € W that is a fixed point of < and u* L p*, then p(u*, u*) =
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Proof. On the contrary suppose that p(u*, u*) # 0. As y* L y* and

M (5, 1) = max { p(e*, 1), min {p(u*, <), p (<), p(<p®, 1), pl<ap’, 1)} |

=P, ).
Therefore,
c(p(an, ap®)) < (M, 1)) =b(M(p" 7))
and so
c(p(u 7)) < c(p(u' ) =o(p(u 7)) < c(p(w' 1)),
which amounts to say that b(p(u*, u*)) = 0. Since b is an altering distance function, we
obtain p(p*, u*) = 0. O

Theorem 6. If the following (x) condition is added to hypotheses of the Theorem 5, the fixed
point of < turns out to be unique. Moreover, lg11 <"(p) = p* for every u € W provided, then
n—oo

u* is a fixed point of <, i.e. the map <: W — W is a Picard operator.

(x) If there exists a point u* € W such that for any orthogonal element yy € W, the iteration
sequence {<1"(yp)} converges to this point, then pu* L p*.

Proof. Following the proof of Theorem 5, there exists a point u* € W such that for any ortho-
gonal element yy € W, the iteration sequence {<" ()} converges to this point. Also, if < is
orthogonal continuous at u* € W, then yu* € W is a fixed point of <.

Suppose p* and 17* are two fixed points of < in W determined in this shape. Then using the
condition (x), one get u* L p* and #* L #*. In this case, using the Lemma 2, p (y*, u*) = 0
and p (n*,1*) = 0 are obtained. Now, we have two cases.

Case L If y* L y* or y* L p*, owing to the condition (3) of Theorem 5, we have

c(p(ap*, <n™)) <g(M 5 77)) —b(M " 1")).

As

M (5, 7) = max {p (", ") ,min {p (", <ap*), p (7", <), p (<, 1), p (<o) }
=p ),
therefore
s(p (<, <)) <c(p (W, m™)) =b(p (W),

which amounts to say that b(p (u*,77*)) = 0. As b is an altering distance function, therefore
for every n € IN, we have p (u*, %) = 0. Also, in view of Lemma 2, we get p (1*, u*) = 0 and
by using Lemma 1, we have p* = %, i.e. the fixed point of < is unique.

Case II. If p* and #* are not orthogonally related elements, then because of (W,_L) is an
orthogonal set, we have

JupeW (u* Lyg and #* L py) or (po L p* and po L 7n*).
Since < is orthogonal preserving self mapping, we get

(u* L <"(po) and 7" L <"(po)) or (<"(po) L p* and <" (po) L 77%)
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for any n € IN and henceforth
c(p(<"po, ")) = c(p( <" po, hp*)) < g(M( <" po, u*)) —b(M( <" po, )
with
M <<1”’1y0, y*) = max {p( "Ly, p*), min {p( <", <"uo), p(u*, <u*),
p(<" 1o <" o), p( < p 1) } |
— p( <n—l }lo, V*)
Therefore

c(p(<"po,u*)) = c(p( <" po, <p™))

(p(<" o, ")) = (p(<" Vo, n*)) < g(p(<" o, "))

IN
"N

Since ¢ is a nondecreasing function, we get p (<", u*) < p (<1”*1y0,y*), i.e. the non-
negative sequence {p (<", p*) } is decreasing. As earlier, we have

lim p (<"po, u*) = 0.

n—oo

Also, since o and 7* are orthogonally related elements, therefore proceeding as earlier, we
can prove that

lim p (<" po, ™) =0.

n—oo

And so, from Lemma 1, we infer that * = u*, i.e. the fixed point of < is unique.
Now, we proceed to show
. n _ *
Jim <"n =y

for every u € W provided p* is a fixed point of <. We distinguish two cases.
Case (i). Let y € W, u* and p are orthogonally related elements. As earlier, we have

: n, n _
lim p (<"p", <"p) = 0.
Also, in view of Lemma 2, we have r}gn p (<"u*, u*) = 0 and by using Lemma 1, we get

. n o *
fim =
Case (ii). Let y € W, yu* and u are not orthogonally related elements. Then because of
(W, L) is an orthogonal set, we have

Juo €W (po L u* and po L u) or (p* L pp and p L uo).

As eatrlier, we can prove lgn p (<o, u*) = 0 and lgn p (u*,<"pup) = 0. By the triangular
n—o00 n—o00
inequality, we obtain

p(<"po, <"po) < p (<"po, u*) +p (17, <"po) -

Then one get
lim p (<"pp, <"up) = 0.

n—o0
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Since p and pg are orthogonally related elements, due to orthogonally preserving property
of <1, we can see, that <ip and <y are orthogonally related elements. Continuing this process
inductively, we get <"y and <"y are orthogonally related elements. Now, we proceeed to
show that

llgglfp (<"po, <"u) = 0.

Suppose lirrlgglfp (<"pg, <"u) = v > 0. Since r}glgop (<", <"up) = 0, for arbitrary ¢,
0 < 6 < v, there exists n; € IN such that for every n > n; we have p (<" uo, <"po) < 6.

Also, since ligr_1> glfp (<™ug, <"u) = v > 6 > 0, there exists n; € IN such that for every
n > ny, we have p (<" pp, <"u) > 6. Therefore, for every n > N = max {ny, np}, we get

M( <"1y, <" i) = max {p( <" g, <" p), min {p( <" o, <"po), p( <", <Mp),

P(<ln yolqn—lyo),p(qn V,Qn_llfl)}}

nfl‘u)_

Therefore, as ¢ is an altering distance function, we get that the nonnegative sequence
p (<"up, <"u) is decreasing. As earlier, we can prove lim p (<"pg, <"u) = 0, which is indeed
n—oo

— p< <]n71 ,uOr<]

a contradiction to nonzeroness of <, implying thereby

liminfp (<"pg, <"pu) = 0.

n—oo

Also, since u* and pg are orthogonally related elements, using the arguments of the earlier
case, we can prove
lim p (<"po, <"p) =0,

n—oo

and by orthogonally lower semi-continuity of p (<", .), we have
p(<" po, lim <"u) < limrrbior(}fp( <" o, <"Mp) = ap,

and
p( <" po, 1) < liminfp( <" po, <" i) = B

As lim a,, = lim B, = 0, thus, in view of Lemma 1, we conclude that
n—o0 n— o0

lim <"y = p*.

n—oo

This completes the proof. O

Example 2. Let W = [0,1) be a set. Defined : W x W — R by d(u,n) = |u — | and define
p:WxW — [0,00) by p(u,7) = p + 1. Also, let the binary relation 1. on W be defined
byu L n <= puy < max {%,%} Then (W, L) is an orthogonal set and d is a metric
onW. (W, L,d) is an orthogonal metric space with w-distance p. In this space, any orthogonal
Cauchy sequence is convergent.

Indeed, if (j,) is an arbitrary orthogonal Cauchy sequence in W, then pupn1 < & or
pnpins1 < P Therefore

1 1
Hn <l/‘n+1 - g) <0 or pp <P‘n - g) <0,
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which implies

1 1
<yn:0 or Pln+1§g> or <yn+1:O or yn§g>.

Therefore, for any 6 > 0 there exists an ngp € IN such that for alln € N, n > n,,
|n — Hn+1| < 9 is provided. So, for any § > 0 and for alln € N, n > ng, we have |u, — 0| < 6,
that is {jt, } is convergent to 0 € W. So (W, L, d) is an orthogonal complete metric space with
a w-distance p. Remark that (W, d) is not a complete sub-metric space of (R, d), because W is
not a closed subset of (R, d).

Letg : [0,00) — [0,00) be defined by ¢(t) = £ and letb : [0,00) — [0,00) be defined by
b(t) = L. Alsolet <t : W — W be defined by

L, o<u<li,
ap) =<2 |

One can see that ¢,b € A and L is a transitive binary relation on W.
Also < is orthogonal preserving mapping. Indeed,

i o (<) or ()

Without loss of generality, assume that uy < % In this case, y = 0 orny < % And so the
following cases can be seen:

I: y=0andn < L;then<(p) =0and <() = £,
II: y=0andn > i; then <a(u) = <(y) =0,
II1: qﬁ%andyﬁ%;thenQ(q):% and <(p) = %,
IV:y<tandp> 1 then<(y)=1%and<(u) =0
These cases imply that <(u) <1 (17) < @.

On the other hand, < is orthogonal continuous at 0 € W. Indeed, assume that {1, } is an
orthogonal sequence and i, — 0. In this case, we have jinpiy41 < 2 or pppn1 < P2 From
this we obtain

1 1
<yn =0 or ppy1 < E) or <yn+1 =0 or pu,< E) .

Therefore, for any 6 > 0 there exists an nyp € IN such that for alln € IN, n > ng, the
inequality |p, — 0| < ¢ is obtained. So, for alln € N, n > ng, we have p, € [0,%]. Thus,
from the definition of <, for the same np € N, n > ng, we get | < (un) — <(0)| < 6, that is
<A(pn) — <(0) = 0.

Now, it can be shown that h is a self mapping satisfying the inequality (3) for all orthogo-
nally related y,n € W, where

M(p, ) = max { p(p, ), min { (e, <ape), p(n, <), p(<p, 1), p(<g, )} |-
Assume that u,1 € W are two orthogonally related elements of W. In this case, we have

K 1
< = < Z.
e

Without loss of generality, assume that un < &.
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Then there exist the following four cases

Case I: y = 0 and 7 < L. Then <(p) = 0, <i(7)
and

= % Clearly, ¢(p(<p, <)) = <”h3L<”7 i5

(,17) = max { p(, ), min {p(n, <), p(, <), p(<pi, ), (<, )} }

= max{iy,min{O,%?}} =1.
b

So,¢(M(p, 1)) = L and b(M(p, 1)) = L. Therefore,

4]
c(p(am <) = 1= < T =T == = c(M(u, 7)) = (M(, 7).
CaseIl: y = 0 and 7 > &. Then <(y) = <i(n7) = 0. Clearly, g(p(<ip, <)) = S0

T = 0. So,
c(p(<p, <n)) =0 < g(M(p,n)) —b(M(

M(p, 1))
Case IIl: y < & andn < L. Then <(y) = &, <(y) = L. There are two cases: 0 <15 < u < 1
or0§y§17§%. ] iC1

SHSpss
It is sufficient to use only one of these situations. Let us assume that the

first condition is satistied. We have ¢ (p(<ip, <)) = 11 =

3 ”12’7, and
(,17) = max { p(, ), min {p(n, <), p(, <), p(<pi, ), p(<, )} }

:max{y+17,m1n{ 5” 6517}}
:max{y—kﬂ,%} =k+1

So, ¢(M(u, 1)) = ”g,ﬂ/b(M(%W)) =1

T' Therefore,

_ bt _ptn ptn 4ptn) _
CaseIV:y < t and pu > L. Then <y = £, < = 0. Clearly, ¢ (p(<ip, <))

= %, and

(,17) = max { p(, ), min {p(n, <), p(, <), p(<pi, ), p(<, )} }
= max {y + 17, min{y, %}} .
There are two following cases.
Ifu < ¢, then M(p,n) = p+n and sog(M(p, 1)) = 151
- A+
c(pl<p, <)) =L < BT BT _ (n+1)

1 3 7 21 ¢(M(p, 1)) = b(M(u,17)).
If%n < u, then M(p,17) = p+n and so g(M(p, 7)) = 31

c(p(ap, <) = & < BT BT 4@‘; 1 — (M) — 5 (MG, ).
Consequently, h is a self mapping satisfying the inequality (3) for all orthogonally related
u,n € W. Thus, all hypothesis of Theorem 5 satisfy and so it is obvious that < has a fixed
point 0 € W.
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T'yarop H.B. Aeaki meopemu npo Hepyxomy mouxy 015 eKCHAHCUBHOCHII OPMO2OHANLHOI P-KOHIMPAKII-
Hocmi // Kapnartceki MateM. myba. — 2024. — T.16, N2. — C. 617-630.

OpToroHaAbHi MHOXXIMHM Ta OPTOTOHAABHI METPUYHI POCTOPY — 1Ie ABa HOBi IIOHSITTSI, SIKi 6yAu
By3HaveHi y 2017 poui. Y IIbOMy THIIi METPUUYHMX IIPOCTOPiB IPeACTaBACHO y3araAbHEeHHs TeopeMu
banaxa mpo HepyxoMmy Touky. IToTim y 2019 poui 6yA0 AOCAIAXKEHO HOBi TeOpeMM PO HEPYXO-
MY TOUKY 3 BUKOPMCTAHHSIM (PYHKIIIII 3MiHeHO] BiacTaHi. HaTxaeHHi po6oTamu [Rhoades B.E. Some
theorems on weakly contractive maps. Nonlinear Anal. 2001, 47 (4), 2683-2693] Ta [Gordji M.E., Rameani
M., De La Sen M., Cho Y.J. On orthogonal sets and Banach fixed point theorem. Fixed Point Theory 2017,
18 (2), 569-578], y miif cTaTTi MU 3aIPOIIOHYBaAM TeOpPeMN PO HEPYXOMY TOUKY AAS PO3IIMpPeH-
HSI OPTOTOHAABHOI p-KOHTPaKTHOCTI depe3 doyHKIIiI 3MiHeHOI BiacTaHi. AOAATKOBO 3aIIpOIIOHOBAHO
HaCAIAKM Ta 06MeXYBaABHIMM IPUKAAA.

Kontouosi crosa i ¢ppasu: HepyxoMma Touka, (pyHKIIisI 3MiHeHOI BiACTaHi, OPTOrOHAABHMIA METPH-
YHVI ITPOCTIp.



