References
- Banakh T., Bardyla S. Characterizing chain-compact and
chain-finite topological semilattices. Semigroup Forum 2019,
98 (2), 234–250. doi:10.1007/s00233-018-9921-x
- Banakh T., Bardyla S. Completeness and absolute H-closedness of
topological semilattices. Topology Appl. 2019,
260, 189–202. doi:10.1016/j.topol.2019.04.001
- Banakh T., Bardyla S. On images of complete topologized
subsemilattices in sequential semitopological semilattices.
Semigroup Forum 2020, 100 (3), 662–670.
doi:10.1007/s00233-019-10061-w
- Banakh T., Bardyla S. Complete topologized posets and
semilattices. Topology Proc. 2021, 57,
177–196.
- Banakh T., Bardyla S. Characterizing categorically closed
commutative semigroups. J. Algebra 2022, 591,
84–110. doi:10.1016/j.jalgebra.2021.09.030
- Banakh T., Bardyla S., Ravsky A. The closedness of complete
subsemilattices in functionally Hausdorff semitopological
semilattices. Topology Appl. 2019, 267, 106874.
doi:10.1016/j.topol.2019.106874
- Bardyla S. Embedding of graph inverse semigroups into CLP-compact
topological semigroups. Topology Appl. 2020, 272,
107058. doi:10.1016/j.topol.2020.107058
- Bardyla S. On topological McAlister semigroups. J. Pure
Appl. Algebra 2023, 227 (4), 107274.
doi:10.1016/j.jpaa.2022.107274
- Bardyla S., Gutik O. On a semitopological polycyclic monoid.
Algebra Discrete Math. 2016, 21 (2), 163–183.
- Bertman M.O., West T.T. Conditionally compact bicyclic
semitopological semigroups. Math. Proc. R. Ir. Acad. A 1976,
76 (21–23), 219–226.
- Carruth J.H., Hildebrant J.A., Koch R.J. The theory of topological
semigroups, 1. In: Monographs and textbooks in pure and applied
mathematics, 75. Marcel Dekker Inc., New York and Basel, 1983.
- Chuchman I.Ya., Gutik O.V. Topological monoids of almost
monotone, injective co-finite partial selfmaps of positive
integers. Carpathian Math. Publ. 2010, 2 (1),
119–132.
- Chuchman I., Gutik O. On monoids of injective partial selfmaps
almost everywhere the identity. Demonstr. Math. 2011,
44 (4), 699–722. doi:10.1515/dema-2013-0340
- Clifford A.H., Preston G.B. The algebraic theory of semigroups, I.
In: Mathematical surveys and monographs, 7. Amer. Math. Soc. Surveys ,
Providence, R.I., 1961.
- Clifford A.H., Preston G.B. The algebraic theory of semigroups, II.
In: Mathematical surveys and monographs, 2. Amer. Math. Soc. Surveys ,
Providence, R.I., 1967.
- Eberhart C., Selden J. On the closure of the bicyclic
semigroup. Trans. Amer. Math. Soc. 1969, 144,
115–126. doi:10.2307/1995273
- Engelking R. General topology. 2nd ed. Heldermann, Berlin, 1989.
- Gutik O. On locally compact semitopological \(0\)-bisimple inverse \(\omega\)-semigroups. Topol. Algebra
Appl. 2018, 6, 77–101. doi:10.1515/taa-2018-0008
- Gutik O., Khylynskyi P. On the monoid of cofinite partial isometries
of \(\mathbb{N}\) with a bounded finite
noise. In: Walczak S. (Eds.) Proceedings of the Contemporary Mathematics
in Kielce 2020. Sciendo, De Gruyter Poland Sp. z o.o. Warsaw, Poland,
2021, 127–144. doi:10.2478/9788366675360-010
- Gutik O., Lawson J., Repovš D. Semigroup closures of finite rank
symmetric inverse semigroups. Semigroup Forum 2009,
78 (2), 326–336. doi:10.1007/s00233-008-9112-2
- Gutik O., Lysetska O. On the semigroup \(\boldsymbol{B}_{\omega}^{\mathscr{F}}\)
which is generated by the family \(\mathscr{F}\) of atomic subsets of \(\omega\). Visnyk Lviv Univ. Ser.
Mech.-Mat. 2021, 92, 34–50.
- Gutik O., Mokrytskyi T. The monoid of order isomorphisms between
principal filters of \(\mathbb{N}^n\). Eur. J. Math. 2020,
6 (1), 14–36. doi:10.1007/s40879-019-00328-5
- Gutik O., Mykhalenych M. On some generalization of the bicyclic
monoid. Visnyk Lviv Univ. Ser. Mech.-Mat. 2020,
90, 5–19. (in Ukrainian).
doi:10.30970/vmm.2020.90.005-019
- Gutik O.V., Pavlyk K.P. Topological semigroups of matrix
units. Algebra Discrete Math. 2005, 3, 1–17.
- Gutik O., Pozdnyakova I. On monoids of monotone injective partial
selfmaps of \(L_n\times_\mathrm{lex}\mathbb{Z}\) with
cofinite domains and images. Algebra Discrete Math. 2014,
17 (2), 256–279.
- Gutik O.V., Reiter A.R. Symmetric inverse topological semigroups
of finite rank \(\leqslant n\). J.
Math. Sci. (N.Y.) 2010, 171 (4), 425–432.
doi:10.1007/s10958-010-0147-z (reprint of Mat. Metody Fiz.-Mekh. Polya
2009, 52 (3), 7–14.)
- Gutik O., Repovš D. Topological monoids of monotone injective
partial selfmaps of \(\mathbb{N}\) with
cofinite domain and image. Studia Sci. Math. Hungar. 2011,
48 (3), 342–353. doi:10.1556/SScMath.48.2011.3.1176
- Gutik O., Repovš D. On monoids of injective partial selfmaps of
integers with cofinite domains and images. Georgian Math. J. 2012,
19 (3), 511–532. doi:10.1515/gmj-2012-0022
- Gutik O., Savchuk A. On the semigroup \(\mathbf{ID}_{\infty}\). Visnyk Lviv
Univ. Ser. Mech.-Mat. 2017, 83, 5–19. (in
Ukrainian)
- Gutik O., Savchuk A. On inverse submonoids of the monoid of
almost monotone injective co-finite partial selfmaps of positive
integers. Carpathian Math. Publ. 2019, 11 (2),
296–310. doi:10.15330/cmp.11.2.296-310
- Harzheim E. Ordered sets. In: Szép J. (Eds.) Advances in Mathematics,
7. Springer, New-York, 2005. doi:10.1007/b104891
- Lawson M.V. Inverse semigroups. The theory of partial symmetries.
World Scientific, Singapore, 1998.
- Meakin J., Sapir M. Congruences on free monoids and submonoids of
polycyclic monoids. J. Aust. Math. Soc. 1993, 54
(2), 236–253. doi:10.1017/S1446788700037149
- Mesyan Z., Mitchell J.D., Morayne M., Péresse Y.H. Topological
graph inverse semigroups. Topology Appl. 2016,
208, 106–126. doi:10.1016/j.topol.2016.05.012
- Petrich M. Inverse semigroups. John Wiley \(\&\) Sons, New York, 1984.
- Ruppert W. Compact semitopological semigroups: an intrinsic theory.
In: Morel J.-M., Teissier B. (Eds.) Lecture Notes in Mathematics, 1079.
Springer, Berlin, 1984. doi:10.1007/BFb0073675
- Szendrei M.B. A generalization of McAlister's \(P\)-theorem for \(E\)-unitary regular semigroups. Acta
Sci. Math. 1987, 51 (1–2), 229–249.
- Stepp J.W. A note on maximal locally compact semigroups.
Proc. Amer. Math. Soc. 1969, 20, 251–253.
doi:10.2307/2036002
- Stepp J.W. Algebraic maximal semilattices. Pacific J. Math.
1975, 58 (1), 243–248. doi:10.2140/pjm.1975.58.243
- Wagner V.V. Generalized groups. Dokl. Akad. Nauk SSSR 1952,
84, 1119–1122. (in Russian)