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A note on normal maximal subgroups
in Mal’cev-Neumann division rings
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The aim of this paper is to describe normal maximal subgroups of the unit groups of Mal’cev-
Neumann division rings. As a corollary, we affirmatively answer the conjecture posed in [Akbari 5.,
Mahdavi-Hezavehi M. On the existence of normal maximal subgroups in division rings. J. Pure Appl.
Algebra 2002, 171 (2-3), 123-131] regarding Mal’cev-Neumann division rings of noncyclic free

groups.
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1 Introduction

Let G be a group with a total order <. If for 4, b and c in G, the condition a2 < b implies
ca < cb and ac =< bc, then G is called an ordered group. It is well known that a free group is
an ordered group with the Magnus order (see, e.g., [5]). A subset S of an ordered group G is
called well-ordered (WO for short) if every nonempty subset of S has a least element. We denote

min(S) the least element of a WO subset S in case S is nonempty.

Let K be a division ring, G an ordered group, and w : G — Aut(K), ¢ — wq a group
morphism. Here Aut(K) is the automorphism group of K. For a (formal) sum « = ) a,¢

with ag € K, the support of a is defined as supp(a) = {g € G : ag # 0}.

K((G,w)) = { = I os3  supp(s) s WO }

Foreverya = Y aggand p = Y begin K((G,w)), we define
g€G g€G

at+p=) (ag+bg)g

e
and
ap=Y ( Y agwg (bh)) u.
ueG \gh=u
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These operators are well-defined and K((G, w)) is a division ring (see [13, Theorem 14.21]).
The division ring K((G,w)) is called the Mal'cev-Neumann division ring of G over K with
respect to w.

The Mal’cev-Neumann division rings were first introduced in [14] and up to now, they
have many applications. Noncrossed product division rings in [6, 11, 12] are constructed by
using special cases of the Mal’cev-Neumann division rings over certain groups. The Mal’cev-
Neumann division rings are also recently used to construct some examples on division rings
which satisfy certain properties (see [1,7-9] in detail). There are many papers which describe
properties of Mal’cev Neumann division rings and their special cases (see, e.g., [10,15,17]).

The aim of this paper is to describe normal maximal subgroups of the unit group of
Mal’cev-Neumann division rings. Among results, we show that if the ordered group G con-
tains a normal maximal subgroup, then so does the unit group (K((G,w)))". As a corollary,
we affirmatively answer the conjecture posed in [3] regarding Mal’cev-Neumann division rings
of noncyclic free groups.

2 Main results
We begin this section with the following lemma.

Lemma 1. Let G be an ordered group, K be a division ring, w : G — Aut(K) be a group mor-
phism, and D = K((G,w)) be the Mal’cev-Neumann division ring of G over K with respect
to w. Then the map v : D* — G, « — min (supp(a)) is a surjective group homomorphism.

Proof. This lemma is just a corollary of [1, Lemma 2.5]. O

In this paper, the morphism v as in Lemma 1 is fixed and used frequently. Lemma 1 has a
corollary as follows.

Corollary 1. Let the assumptions of Lemma 1 hold and the surjective group homomorphism
v as above. Assume that M is a maximal subgroup of D*. Then either v(M) = G or v(M) is a
maximal subgroup of G. Moreover, if v(M) # G, thenv(M) C M.

Proof. Assume that M is a maximal subgroup of D* and v(M) # G. For H < G such that
v(M) < H and v(M) # H, since M is maximal in D*, v~'(H) = D*. Then v(D*) = H. Since
v is surjective, v (D*) = G. Thus, G = H, and so v(M) is a maximal subgroup of G.

Now we prove the final assertion. Given the hypothesis v(M) # G, assume thatv(M) ¢ M.
Let ¢ € v(M) \ M. Then, since M is maximal in D*, (M, g) = D*. Thus,

v((M,g)) =v(D%) =G.

Observe that v((M, g)) = (v(M),v(g)) = v(M). Consequently, v(M) = G, a contradic-
tion. Hence, v(M) C M. O

Let G be a group and H its subgroup. The core of H in G is the subgroup

Coreg(H) = () gHg "
geG

The core of H is the largest normal subgroup of G contained in H. Moreover, one has the
following property.
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Lemma 2 ([16, 3.3.5]). Let G be a group and H a subgroup of G. If the index of H in G is finite,
then G/Coreg(H) is a finite group.

Now we show the first main result of this paper.

Theorem 1. Let G be an ordered group, K be a division ring, w : G — Aut(K) be a group mor-
phism, and D = K((G,w)) be the Mal’cev-Neumann division ring of G over K with respect
tow.

1. If G has a maximal subgroup, which is normal in G, then D* also has a normal maximal
subgroup of prime index.

2. If G has a maximal subgroup of finite index n, then D* also has a maximal subgroup of
index n.

Proof. 1. Assume that M is a maximal subgroup of G which is normal. Then G/M is a simple
group and G/M has only two subgroups which are (1) and G/M. This leads to the fact
that G/M = (go) for some go € G\ M. Since G/M is simple, it must be a cyclic group of
prime degree. Put ¢ to be the surjective group morphism ¢ : G - G/M, g — g. Then
the composition vo ¢ : D* — G/M is a surjective group morphism, where v is the group
morphism as defined in Lemma 1. Therefore, the quotient group D*/ ker(v o ¢) is a cyclic
group of prime degree. Hence, ker(v o ¢) is a normal maximal subgroup of prime index of D*.

2. Assume that M is a maximal subgroup of G of index n. By Lemma 2, the quotient group
G/Coreg(M) is finite. Using the same group morphism ¢ : G — G/Coreg(M), g — g, and
v : D* — G as Case 1. Then the composition vo ¢ : D* — G/Coreg(M) is also a surjective
group morphism. This follows that

voQ
D*/ker(vo¢) = G/Coreg(M).

Then there exists a subgroup H of D* such that

UO(P
H/ker(vo¢) = M/Coreg(M),
that is, H/ ker(v o ¢) is a maximal subgroup of D*/ ker(v o ¢). Clearly, H is a maximal sub-
group of index n of D*. O

The previous result seems to be interesting because the existence of normal maximal sub-
groups in K((G,w)) does not depend on the base division ring K and the morphism w.
Moreover, by applying the previous theorem, we answer affirmatively a conjecture on the exis-
tence of maximal subgroups in division rings. More precisely, the following conjecture posed
in [3].

Conjecture 1 ([3, Conjecture]). Let D be a noncommutative division rings. The unit group D*
contains a maximal subgroup.

This conjecture holds for some certain classes of division rings (see [2—4]). However, it is
still open in general. In this paper, we show this conjecture holds for the Mal’cev-Neumann
division rings of free groups. We note that almost all division rings mentioned in [3] for which
the conjecture holds are finite dimensional over its center. The following corollary is an infinite-
dimensional case.
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Corollary 2. Let G be a noncyclic free subgroup, K be a division ring, w : G — Aut(K) be
a group morphism, and D = K((G,w)) be the Mal’cev-Neumann division ring of G over K
with respect to w. Then D* contains infinitely many normal maximal subgroups.

Proof. Assume that the free group G has the rank at least two. Select a generator x of G. Let
C, be the cyclic group of prime order p. Assume that C, = (c). Defineamap ¢ : G — C,
as follows: x — c and y — 1 for any generator y of G such that y # x. According to the
universal property of the free group, the map ¢ is a group morphism. Moreover, ¢ is surjective.
Hence, since Cj, is simple, the kernel ker(¢) is a normal maximal subgroup of index p of G.
According to Theorem 1, the multiplicative group D* also has a maximal subgroup of index p,
and obviously this subgroup is normal in D*. Thus, D* has infinitely many normal maximal
subgroups. O

Now, we will present a description of a normal maximal subgroup in the special case, when
the base division ring K is a field and w is trivial, that is, w(g) = Idk for every ¢ € G. In this
case, we write shortly K((G)) for K((G,w)). To show the next main result, we borrow the
following lemma.

Lemma 3. Let G be a noncyclic free group and F be a field. For every « € F((G)) with
y =v(a) > 1, there exists § € F((G))" such that

papt =Y aiy,
i=n
wheren € Z and a; € F foreveryi > n.

Proof. It follows from [1, Lemma 4.2]. O

Theorem 2. Let G be a noncyclic free group, F be a field and D = F((G)) be the Mal’cev-
Neumann division ring of G over F. Assume that M is a normal maximal subgroup of D*.
Then M is the normal closure in D* of the set

S := {(x: Y ay:aeMneZy> 1}.
i=n
Moreover, if v(M) # G, then M is the normal closure in D* of the set
{oc =Y ay:aeMy> 1} Uo(M).
i=0

Proof. Let N be the normal closure in D* of S. It is obvious that N C M. To show the reverse
inclusion, we may assume that « is an element of M. Put y = v(«).

oo
Case 1. Let y > 1. By Lemma 3, there exists § € D* such that Baf~! = Z a;y', wheren € Z
i=n
and a; € F forevery i > n,a, € F*. Since «# € M and M is normal in F((G))", Bap~! € M.
Since y > 1, we have Baf~! = Zaiyz € S C N. This leads to

a=p1 <Zaiyi> B € N.
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Case 2. Lety < 1. Then v (a 1) > 1. By repeating the arguments in the proof of Case 1 for
a~! onehas a~! € N, which also deduces that « € N.

Case 3. Let y = 1. By Corollary 1, either v(M) = G or v(M) is maximal in G. Since G is
a noncyclic free group, v(M) # {1}. Select B € M such that v(8) # 1. Then af € M and
v(aB) # 1. According to the two above cases, a3 € N and B € N. Thus, « = (a8)B~! € N.

The three cases prove that M = N, that is, M is the normal closure of S.

Now, assume that v(M) # G. Put

T = {a:Zaly":(xeM,y>1}.
i=0

By Corollary 1, (M) € M. Since M is normal in D*, the normal closure of T U v(M) is

o .
contained in M. Fora = Y a;* € S, we have
i=n

o= (2%"#) y" € (T, o(M)).

It follows that (S) < (T,v(M)). Since M is the normal closure of S, M is contained in the
normal closure of T U v(M). Hence, M is the normal closure of T U v(M). O
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Mertoro 11i€i poboTH € Omic HOpMAABHMX MaKCMMAaABHUX IHATPYTI OAVHIYHMX IPYTI KiAellb 3 Ai-
AeHHIMU MaabieBa-Helimana. fIK HacAiAOK, MM CTBEpAHO BiATIOBiAA€MO Ha TillOTe3y, BUCYHYTY B
[Akbari S., Mahdavi-Hezavehi M. On the existence of normal maximal subgroups in division rings. J.
Pure Appl. Algebra 2002, 171 (2-3), 123-131], crocoBHO Kirenp 3 AireHHsIMM ManbneBa-Helimara
AASI HEOIVIKATUHMX BIABHMX TPYIL

Kntouosi cnosa i hpasu: Kiablle 3 AiAeHHSIM, Kinblle 3 AireHHSIM ManblieBa-HeliMaHa, MakciMaAb-
Ha IMiArpyIa, HOpMaAbHA MaKC/MaAbHA MATPYTIA.



