

Карпатські матем. публ. 2024, Т.16, №2, С.558–564

δ-Almost Ricci soliton on 3-dimensional trans-Sasakian manifold

Acet T.

In this paper, we consider δ -almost Ricci soliton on 3-dimensional trans-Sasakian manifold admitting η -parallel Ricci tensor. We give some conditions for $P \cdot \phi = 0$, $P \cdot S = 0$, $Q \cdot P = 0$. Also, we show that there is almost pseudo symmetric δ -almost Ricci soliton on 3-dimensional trans-Sasakian manifold admitting cyclic Ricci tensor. Finally, we give an example for verifying the obtained results.

Key words and phrases: Ricci soliton, δ -almost Ricci soliton, trans-Sasakian manifold.

Faculty of Arts and Sciences, Department of Mathematics, İnönü University, Malatya, Türkiye E-mail: tubaact@gmail.com

1 Introduction

A Ricci soliton (g, V, λ) on a Riemannian manifold (M, g) is a generalization of an Einstein metric such that

$$\pounds_V g + 2S + 2\lambda g = 0, (1)$$

where S is the Ricci tensor, \pounds_V is the Lie derivative operator along the vector field V on M and λ is a real number. The Ricci soliton is said to be shrinking, steady or expanding according to λ being negative, zero or positive, respectively. Ricci solitons have been studied by many authors (see [1–4,11,12]).

As a generalization of Ricci soliton, the notion of almost Ricci soliton by considering the constant λ as a smooth function introduced in [10]. Recently, J.N. Gomes et. al. extended the term of almost Ricci soliton to δ -almost Ricci soliton (briefly δ -ARS) on a complete Riemannian manifold by

$$\frac{\delta}{2} \pounds_V g + S + \lambda g = 0,$$

where $\delta: M \to \mathbb{R}$ is a smooth function [9]. In [8], δ -ARS was studied on K-contact metric manifolds.

Also, the projective curvature tensor *P* is given by

$$P(U,V)Z = R(U,V)Z - \frac{1}{n-1} (g(V,Z)QU - g(U,Z)QV),$$
 (2)

where *Q* is the Ricci operator (see [14]).

УДК 514.7

2020 Mathematics Subject Classification: 53D10, 53A40.

2 Preliminaries

Let M be a connected almost contact metric manifold of dimension 2n + 1 with an almost contact metric structure (ϕ, ξ, η, g) and g is a Riemannian metric such that

$$\phi^{2}(U) = -U + \eta(U)\xi, \quad \eta(\xi) = 1, \quad \eta(\phi U) = 0, \quad \phi \xi = 0,$$

$$g(\phi U, \phi V) = g(U, V) - \eta(U)\eta(V),$$
(3)

for all vector fields *U*, *V* on *M*.

If there are smooth functions α , β on (M, ϕ, ξ, η, g) satisfying

$$(\nabla_{U}\phi) V = \alpha (g(U,V)\xi - \eta(V)U) + \beta (g(\phi U,V)\xi - \eta(V)\phi U), \tag{4}$$

then it is called a trans-Sasakian manifold (see [6]).

By using (3) with (4), we get

$$\nabla_{U}\xi = -\alpha\phi U + \beta(U - \eta(U)\xi). \tag{5}$$

If we consider α and β to be constant, then for a 3-dimensional trans-Sasakian manifold we get

$$R(U,V)Z = \left(\frac{r}{2} - 2\left(\alpha^2 - \beta^2\right)\right) \left(g(V,Z)U - g(U,Z)V\right) + \left(\frac{r}{2} - 3\left(\alpha^2 - \beta^2\right)\right) \left(g(U,Z)\eta(V)\xi - g(V,Z)\eta(U)\xi + \eta(U)\eta(Z)V - \eta(V)\eta(Z)U\right),$$

$$S(U,V) = \left(\frac{r}{2} - \left(\alpha^2 - \beta^2\right)\right) g(U,V) - \left(\frac{r}{2} - 3\left(\alpha^2 - \beta^2\right)\right) \eta(U)\eta(V),$$

$$QU = \left(\frac{r}{2} - \left(\alpha^2 - \beta^2\right)\right) U - \left(\frac{r}{2} - 3\left(\alpha^2 - \beta^2\right)\right) \eta(U)\xi.$$
(6)

Proposition 1. If a 3-dimensioanl trans-Sasakian manifold M admits a δ -almost Ricci soliton, then $\lambda = -2(\alpha^2 - \beta^2)$.

Proof. Let $(g, \xi, \delta, \lambda)$ be a δ -almost Ricci soliton on M. From (1), we can write

$$\frac{\delta}{2}(\pounds_{\xi}g)(U,Y) + S(U,Y) + \lambda g(U,Y) = 0. \tag{7}$$

Also, in view of (5), we get

$$\begin{split} (\pounds_{\xi}g)(U,Y) &= g(\nabla_{U}\xi,V) + g(U,\nabla_{V}\xi) \\ &= -\alpha g(\phi U,Y) + \beta g(U,Y) - \beta \eta(U)\eta(Y) \\ &- \alpha g(U,\phi Y) + \beta g(U,Y) - \beta \eta(U)\eta(Y) \\ &= 2\beta \big(g(U,Y) - \eta(U)\eta(Y)\big). \end{split}$$

Using the above equality in (7), we arrive at

$$S(U,Y) = (-\lambda - \delta\beta) g(U,Y) + \delta\beta\eta(U)\eta(Y). \tag{8}$$

Taking $U = \xi = Y$ in (8) and using (6), we obtain

$$\lambda = -2\left(\alpha^2 - \beta^2\right). \tag{9}$$

Corollary 1. *A 3-dimensional trans-Sasakian manifold with \delta-almost Ricci soliton is an \eta-Einstein manifold.*

560 Acet T.

3 δ -almost Ricci soliton on a 3-dimensional trans-Sasakian manifold with η -parallel Ricci tensor

Definition 1 ([13]). A 3-dimensional trans-Sasakian manifold M is called to be η-parallel Ricci tensor if

$$g((\nabla_U Q)Y, V) = 0$$

for any U, V, Y on M.

Now, we consider δ -ARS on M with η -parallel Ricci tensor. From (8), we have

$$QY = (-\lambda - \delta\beta) Y + \delta\beta\eta(Y)\xi.$$

Taking covariant differentiation of the above equation with respect to U, we obtain

$$(\nabla_{U}Q)Y = -(U\lambda)Y - (U\delta)\beta Y - (U\beta)\delta Y + (U\delta)\beta\eta(Y)\xi + (U\beta)\delta\eta(Y)\xi + \delta\beta\Big(\big((\nabla_{U}\eta)Y\big)\xi - \eta(Y)\nabla_{U}\xi\Big).$$

Using (5) in the above equation, we get

$$\begin{split} (\nabla_{U}Q)Y &= -(U\lambda)Y - (U\delta)\beta Y + (U\delta)\beta\eta(Y)\xi \\ &+ \delta\beta\Big(-\alpha g(\phi U,Y)\xi + \beta g(U,Y)\xi - \alpha\eta(Y)\phi U + \beta\eta(Y)U - 2\beta\eta(U)\eta(Y)\xi\Big). \end{split}$$

Taking inner product with V, we obtain

$$\begin{split} g\big((\nabla_U Q)Y,V\big) &= -(U\lambda)g(Y,V) - (U\delta)\beta g(Y,V) + (U\delta)\beta \eta(Y)\eta(V) \\ &+ \delta\beta\Big(-\alpha g(\phi U,Y)\eta(V) + \beta g(U,Y)\eta(V) - \alpha g(\phi U,V)\eta(Y) \\ &+ \beta g(U,V)\eta(Y) - 2\beta\eta(U)\eta(Y)\eta(V)\Big) = 0. \end{split}$$

Putting $Y = \xi$ in the above equation, we get

$$-(U\lambda)\eta(V) + \delta\beta(-\alpha g(\phi U, V) + \beta g(U, V) - \beta\eta(U)\eta(V)) = 0.$$
 (10)

Again taking $V = \xi$ in (10), we obtain

$$U\lambda = 0, \tag{11}$$

which gives that U is constant. By use of (11) in (10), we can state

$$\delta\beta(-\alpha g(\phi U, V) + \beta g(U, V) - \beta\eta(U)\eta(V)) = 0.$$

Putting $U = V = e_i$, $1 \le i \le 3$, where e_i denotes a set of orthonormal vector fields of M, we get $\delta \beta^2 = 0$, which yields $\delta = 0$. Thus we arrive at

$$S(U,Y) = -\lambda g(U,Y).$$

So, we have following result.

Theorem 1. If a 3-dimensional trans-Sasakian manifold admits a δ -ARS with η -parallel Ricci tensor then it becomes an Einstein manifold.

4 The curvature conditions on a 3-dimensional trans-Sasakian manifold admitting a δ -almost Ricci soliton

Firstly, we give the curvature condition $P \cdot \phi = 0$ on M admitting a δ -ARS. We know that if $(P \cdot \phi)(X, Y)U = 0$, then we have

$$P(X,Y)\phi U - \phi P(X,Y)U = 0.$$

If we take $U = \xi$ in the above equation, we get

$$\phi P(X,Y)\xi = 0.$$

Using (2) in the latter equality, we obtain

$$\left(\left(\alpha^2 - \beta^2\right) + \frac{\lambda + \delta\beta}{2}\right) \left(\eta(Y)\phi X - \eta(X)\phi Y\right) = 0. \tag{12}$$

Replacing *X* by ϕX in (12) and using (3), we get

$$\left(\left(\alpha^2 - \beta^2\right) + \frac{\lambda + \delta\beta}{2}\right)\left(-X + \eta(X)\xi\right)\eta(Y) = 0.$$

Putting $Y = \xi$ and replacing X by ϕX in the above equation, we arrive at

$$\left(\left(\alpha^2 - \beta^2\right) + \frac{\lambda + \delta\beta}{2}\right)\phi X = 0. \tag{13}$$

Taking inner product with W in (13), we obtain

$$\left(\left(\alpha^2 - \beta^2\right) + \frac{\lambda + \delta\beta}{2}\right) g(\phi X, W) = 0.$$

It follows that $\lambda + \delta \beta = -2(\alpha^2 - \beta^2)$, which gives $\delta = 0$. Using this value in (1), we obtain $S(U,V) = -\lambda g(U,V)$.

So, we get the following assertion.

Theorem 2. If a 3-dimensional trans-Sasakian manifold admits a δ -ARS and satisfies $P \cdot \phi = 0$, then the manifold is an Einstein manifold.

Now, we examine the curvature conditions $P \cdot S = 0$ on M with a δ -ARS. In this case, we have

$$S(P(\xi, Y)Z, V) + S(Z, P(\xi, Y)V) = 0.$$

In view of (2) in the above equation, we get

$$\begin{split} \left(\alpha^2 - \beta^2\right) \left(S(\xi, V)g(Y, Z) - S(Y, V)\eta(Z) + S(\xi, Z)g(Y, V) - S(Y, Z)\eta(V)\right) \\ - \frac{1}{2} \left(\delta\beta\left(g(Y, V)\eta(Z) + g(Y, Z)\eta(V)\right) - 2\delta\beta\eta(Z)\eta(V)\eta(Y)\right) = 0. \end{split}$$

Taking $V = \xi$ in the latter equality and using (8), we obtain

$$\left(\alpha^2 - \beta^2\right) S(Y, Z) = \left(-\lambda \left(\alpha^2 - \beta^2\right) - \frac{\delta \beta}{2}\right) g(Y, Z) + \frac{\delta \beta}{2} \eta(Y) \eta(Z).$$

Therefore we can state following result.

<u>562</u> Acet T.

Theorem 3. If a 3-dimensional trans-Sasakian manifold admits a δ -ARS and satisfies $P \cdot S = 0$, then the manifold is an η -Einstein manifold.

Finally, we consider the curvature condition $Q \cdot P = 0$ on M with a δ -ARS. Thus, we get

$$(Q \cdot P)(X, V)W = 0.$$

The latter equation implies

$$Q(P(X,V)W) - P(QX,V)W - P(X,QV)W - P(X,V)QW = 0.$$

Using (8) in the above equation, we obtain

$$-2((\lambda + \delta\beta)P(X, V)W) + \delta\beta \Big(\eta \big(P(X, V)W\big)\xi - P(\xi, V)W\eta(X) - P(X, \xi)W\eta(V) - P(X, V)\xi\eta(W)\Big) = 0.$$

Taking $W = \xi$ in the previous equality, we get

$$\left(-2(\lambda+\delta\beta)-\delta\beta\right)P(X,V)\xi+\delta\beta\Big(\eta\big(P(X,V)\xi\big)\xi-P(\xi,V)\xi\eta(X)-P(X,\xi)\xi\eta(V)\Big)=0.$$

Now, using (2) in the above equation, we obtain

$$-2((\lambda + \delta\beta) + \delta\beta) \left((\alpha^2 - \beta^2) + \frac{\lambda + \delta\beta}{2} \right) (\eta(V)X - \eta(X)V) = 0.$$
 (14)

Replacing *X* by ϕX and taking $V = \xi$ in (14), we get

$$-2((\lambda + \delta\beta) + \delta\beta) \left(\left(\alpha^2 - \beta^2 \right) + \frac{\lambda + \delta\beta}{2} \right) \phi X = 0.$$

Taking inner product with Y in the above equation, we find

$$-2((\lambda + \delta\beta) + \delta\beta) \left((\alpha^2 - \beta^2) + \frac{\lambda + \delta\beta}{2} \right) g(\phi X, Y) = 0,$$

from which we arrive at $\lambda = 0$ or $\lambda + \delta \beta = -2(\alpha^2 - \beta^2)$. In view of (9), we get $\delta = 0$. Using this equation in (1), we get following result.

Theorem 4. If a 3-dimensional trans-Sasakian manifold admits a δ -ARS and satisfies $Q \cdot P = 0$, then the Ricci soliton steady or the manifold is an Einstein manifold.

5 Almost pseudo Ricci symmetric δ -almost Ricci soliton

Definition 2 ([5]). A 3-dimensional trans-Sasakian manifold M is called an almost pseudo Ricci symmetric manifold if its Ricci tensor S is not identically zero and satisfies

$$(\nabla_{U}S)(Y,V) = (A(U) + B(U))S(Y,V) + A(Y)S(U,V) + A(V)S(U,Y),$$
(15)

where A and B are two non-zero 1-forms given by

$$A(U) = g(U, \rho_1), \quad B(U) = g(U, \rho_2).$$
 (16)

In view of (15), we can write

$$(\nabla_{U}S)(Y,V) + (\nabla_{Y}S)(V,U) + (\nabla_{V}S)(Y,U) = (3A(U) + B(U))S(Y,V) + (3A(Y) + B(Y))S(V,U) + (3A(V) + B(V))S(Y,U).$$

If *M* admits a cyclic Ricci tensor, the above equation reduces to

$$(3A(U) + B(U))S(Y,V) + (3A(Y) + B(Y))S(V,U) + (3A(V) + B(V))S(Y,U) = 0.$$
(17)

Taking $V = \xi$ in (17) and using (8) with (16), we get

$$-\lambda (3A(U) + B(U))\eta(Y) - \lambda (3A(Y) + B(Y))\eta(U) + (3\eta(\rho_1) + \eta(\rho_2))S(Y, U) = 0.$$
 (18)

Similarly taking $Y = \xi$ in (18) and by use of (8) with (16), we find

$$-\lambda \left(3A(U) + B(U)\right) - 2\lambda \left(3\eta(\rho_1) + \eta(\rho_2)\right)\eta(U) = 0. \tag{19}$$

Substituting $U = \xi$ in (19) and using (8) with (16), we obtain

$$3\eta\left(\rho_{1}\right)+\eta\left(\rho_{2}\right)=0.$$

Thus, we have following result.

Theorem 5. There is no almost pseudo Ricci symmetric δ -ARS on a 3-dimensional trans-Sasakian manifold M admitting cyclic Ricci tensor, unless 3A + B vanishes everywhere on M.

Example 1. Let us consider 3-dimensional manifold $M = \{(x, y, z) \in \mathbb{R}^3\}$, where (x, y, z) standard coordinates in \mathbb{R}^3 . Define vector fields $\{\omega_i : 1 \le i \le 3\}$ on M given [7] by

$$\omega_1 = e^{2z} \partial x$$
, $\omega_2 = e^{2z} \partial y$, $\omega_3 = \partial z$.

If we consider $\omega_3 = \xi$ such that

$$\eta(U) = g(U, \omega_3),$$

then we have $\eta(\xi) = 1$. Also $\phi(\omega_1) = \omega_2$, $\phi(\omega_2) = \omega_1$, $\phi(\omega_3) = 0$. Thus, (g, ϕ, ξ, η) defines an almost contact metric structure. Now, we have

$$[\omega_1, \omega_1] = 0$$
, $[\omega_1, \omega_3] = -2\omega_1$, $[\omega_2, \omega_3] = -2\omega_2$.

Using Kozsul's formula we obtain

$$\nabla_{\omega_1}\omega_1 = 2\omega_3, \quad \nabla_{\omega_1}\omega_2 = 0, \qquad \nabla_{\omega_1}\omega_3 = -2\omega_1
\nabla_{\omega_2}\omega_1 = 0, \qquad \nabla_{\omega_2}\omega_2 = 2\omega_3, \quad \nabla_{\omega_2}\omega_3 = -2\omega_2
\nabla_{\omega_3}\omega_1 = 0, \qquad \nabla_{\omega_3}\omega_2 = 0, \qquad \nabla_{\omega_3}\omega_3 = 0.$$

In view of this equation for Riemannian curvature tensor R and Ricci tensor S, we arrive at

$$R(\omega_1, \omega_2)\omega_2 = -4\omega_1$$
, $R(\omega_1, \omega_3)\omega_3 = -4\omega_1$, $R(\omega_2, \omega_3)\omega_3 = -4\omega_2$, $R(\omega_3, \omega_1)\omega_1 = -4\omega_2$, $R(\omega_3, \omega_2)\omega_2 = 4\omega_2$, $R(\omega_2, \omega_1)\omega_1 = 4\omega_3$,

and

$$S(\omega_1, \omega_1) = 0$$
, $S(\omega_2, \omega_2) = 0$, $S(\omega_3, \omega_3) = -8$.

By use of above values on (7), finally we get $\lambda = 8$ and $\delta = -8$. Hence we can state $(g, \xi, 8, -8)$ defines a δ -ARS on trans-Sasakian manifold of type $(\alpha, 1)$.

564 Acet T.

References

[1] Acet B.E. A note on Ricci solitons on para-Sasakian manifolds. Erzincan Uni. J. Sci. Techn. 2018, 11 (2), 237–242. doi:10.18185/erzifbed.402310

- [2] Blaga A.M. η-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat 2016, **30** (2), 489–496. doi: 10.2298/FIL1602489B
- [3] Blaga A.M., Perktaş S.Y., Acet B.E., Erdoğan F.E. η -Ricci solitons in (ϵ)-almost paracontact metric manifolds. Glas. Mat. Ser. III 2018, **53** (1), 205–220. doi:10.3336/gm.53.1.14
- [4] Calin C., Crasmareanu M. From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds. Bull. Malays. Math. Sci. Soc. 2010, **33** (3), 361–368.
- [5] Chaki M.C., Kawaguchi T. On almost pseudo Ricci symmetric manifolds. Tensor (N.S.) 2007, 68, 10–14.
- [6] De U.C., Sarkar A. On three dimensional trans-Sasakian manifolds. Extracta Math. 2008, 23 (3), 265–277.
- [7] Ganguly D., Dey S., Bhattacharyya A. *On trans-Sasakian 3-manifolds as η-Einstein soliton*. Carpathian Math. Publ. 2021, **13** (2), 460–474 doi:10.15330/cmp.13.2.460-474
- [8] Ghosh A., Patra D.S. *The k-almost Ricci solitons and contact geometry*. J. Korean Math. Soc. 2018, **55** (1), 161–174. doi:10.4134/JKMS.j170103
- [9] Gomes J.N., Wang Q., Xia C. On the h-almost Ricci soliton. J. Geom. Phys. 2017, **114**, 216–222. doi: 10.1016/j.geomphys.2016.12.010
- [10] Pigola S., Rigoli M., Rimoldi M., Setti A.G. *Ricci almost solitons*. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2011, **10**, 757–799.
- [11] Prakasha D.G., Hadimani B.S. η -Ricci solitons on para-Sasakian manifolds. J. Geom. 2017, **108**, 383–392. doi: 10.1007/s00022-016-0345-z
- [12] Turan M., De U.C., Yıldız A. *Ricci solitons and gradient Ricci solitons in three-dimensional trans-Sasakian mani-folds.* Filomat 2012, **26** (2), 363–370. doi:10.2298/FIL1202363T
- [13] Wang Y., Liu X. On almost Kenmotsu manifolds satisfying some nullity distributions. Proc. Nat. Acad. Sci. India Sect. A 2016, **86**, 347–353. doi:10.1007/s40010-016-0274-0
- [14] Yano K., Kon M. Structures on manifolds. In: Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984.

Received 24.06.2022 Revised 26.02.2024

Асет Т. δ -Майже солітон Річчі на тривимірному транс-Сасакяновому многовиді // Карпатські матем. публ. — 2024. — Т.16, №2. — С. 558–564.

У цій роботі ми розглядаємо δ -майже солітон Річчі на тривимірному транс-Сасакяновому многовиді, який допускає η -паралельний тензор Річчі. Ми наводимо деякі умови для $P\cdot \phi=0$, $P\cdot S=0$, $Q\cdot P=0$. Також показано, що на тривимірному транс-Сасакяновому многовиді, який допускає циклічний тензор Річчі, існує майже псевдосиметричний δ -майже солітон Річчі. Насамкінець, ми наводимо приклад для перевірки отриманих результатів.

Kлючові слова і фрази: солітон Річчі, δ -майже солітон Річчі, транс-Сасакяновий многовид.