References
- Abdollahi A., Hassanabadi A.M. Non-cyclic graph of a group. Commun. Algebra 2007, 35 (7), 2057–2081. doi:10.1080/00927870701302081
- Akbari S., Heydari F., Maghasedi M. The intersection graph of a group. J. Algebra Appl. 2015, 14 (5), 1550065. doi:10.1142/S0219498815500656
- Alfuraidan M.R., Zakariya Y.F. Inverse graphs associated with finite groups. Electron. J. Graph Theory Appl. 2017, 5 (1), 142–154. doi:10.5614/ejgta.2017.5.1.14
- Amreen J., Naduvath S. On the Non-Inverse Graph of a Group. Discuss. Math. Gen. Algebra Appl. 2020, 42 (12), 315–325. doi:10.7151/dmgaa.1392
- Anderson D.F., Badawi A. The total graph of a commutative ring. J. Algebra 2008, 320 (7), 2706–2719. doi:10.1016/j.jalgebra.2008.06.028
- Anderson D.F., Livingston P.S. The zero-divisor graph of a commutative ring. J. Algebra 1999, 217 (2), 434–447.
- Balakrishnan P., Sattanathan M., Kala R. The center graph of a group. South Asian J. Math. 2011, 1, 21–28.
- Bowlin G.S. Maximum frustration in bipartite signed graphs. Electron. J. Combin. 2012, 19 (4), article P10. doi:10.37236/2204
- Cameron P.J., Ghosh S. The power graph of a finite group. Discrete Math. 2011, 311 (13), 1220–1222. doi:10.1016/j.disc.2010.02.011
- Cohn P.M. Basic algebra. Springer, New Delhi, 2003.
- Harary F. On the notion of balance of a signed graph. Michigan Math. J. 1953, 2 (2), 143–146. doi:10.1307/MMJ/1028989917
- Madhusudhan K.V. Note on Distance Coprime Signed Graphs. J. Comput. Math. Sci. 2018, 9 (10), 1473–1476.
- Ma X.L., Wei H.Q., Zhong G. The cyclic graph of a finite group. Algebra 2013, 1, 107265. doi:10.1155/2013/107265
- Rajendra R., Reddy P.S.K., Siddalingaswamy V.M. On some signed graphs of finite groups. South East Asian J. Math. Math. Sci. 2018, 14 (3), 57–62.
- Reddy P.S.K., Madhusudhan K.V., Shivashankara K. Negation switching equivalence in signed graphs. Int. J. Math. Combin 2010, 3, 85–90. doi:10.5281/zenodo.9343
- Sampathkumar E. Point signed and line signed graphs. Nat. Acad. Sci. Lett. 1984, 7 (3), 91–93.
- Sinha D., Acharya M. Characterization of signed graphs whose iterated signed line graphs are balanced or \(S\)-consistent. Bull. Malays. Math. Sci. Soc. 2016, 39 (1), 297–306. doi:10.1007/s40840-015-0264-4
- Sinha D., Dhama A. Sign-compatibility of some derived signed graphs. Mapana J. Sci. 2012, 11 (4), 1–14. doi:10.12723/mjs.23.1
- West D.B. Introduction to graph theory. Prentice-Hall of India Pvt. Ltd., New Delhi, 2001.