References
- Blahota I., Gát G., Goginava U. Maximal operators of Fejér means
of double Vilenkin-Fourier series. Colloq. Math. 2007,
107 (2), 287–296. doi:10.4064/cm107-2-8
- Gát G. On the divergence of the \((C,1)\) means of double
Walsh-Fourier series. Proc. Amer. Math. Soc. 2000,
128 (6), 1711–1720.
- Gát G., Goginava U. Maximal convergence space of a subsequence of
the logarithmic means of rectangular partial sums of double
Walsh-Fourier series. Real Anal. Exchange 2005/2006,
31 (2), 447–464.
- Gát G., Karagulyan G. On convergence properties of tensor
products of some operator sequences. J. Geom. Anal. 2015,
26 (4), 3066–3089. doi:10.1007/S12220-015-9662-Y
- Goginava U. Maximal operators of \((C,\alpha)\)-means of cubic partial sums of
\(d\)-dimensional Walsh-Fourier
series. Anal. Math. 2007, 33 (4), 263–286.
doi:10.1007/s10476-007-0402-9
- Goginava U. Marcinkiewicz-Fejér means of double Vilenkin-Fourier
series. Studia Sci. Math. Hungar. 2007, 44 (1),
97–115.
- Goginava U. Logarithmic means of Walsh-Fourier series.
Miskolc Math. Notes 2019, 20 (1), 255–270. doi:10.18514/MMN.2019.2702
- Goginava U. Maximal operators of Walsh-Nörlund means on the
dyadic Hardy spaces. Acta Math. Hungar. 2023, 169
(1), 171–190. doi:10.1007/s10474-023-01294-x
- Goginava U., Nagy K. Some properties of the Walsh-Nörlund
means. Quaest. Math. 2023, 46 (2), 301–334.
doi:10.2989/16073606.2021.2014594
- Golubov B., Efimov A., Skvortsov V. Walsh series and transforms.
Theory and applications. In: Mathematics and its applications. Soviet
series, 64. Kluwer Academic Publishers Group, Dordrecht, 1987.
- Móricz F., Schipp F., Wade W.R. Cesàro summability of double
Walsh-Fourier series. Trans. Amer. Math. Soc. 1992,
329 (1), 131–140. doi:10.2307/2154080
- Móricz F., Siddiqi A.H. Approximation by Nörlund means of
Walsh-Fourier series. J. Approx. Theory 1992, 70
(3), 375–389.
- Wade W.R., Schipp F., Simon P. An introduction to dyadic harmonic
analysis. In: Hilger A. (Ed.) Walsh series. Akadémiai Kiadó, Budapest,
1990.
- Simon P. Cesáro summability with respect to two-parameter Walsh
systems. Monatsh. Math. 2000, 131 (4), 321–334.
doi:10.1007/s006050070004
- Toledo R. On the boundedness of the \(L^1\)-norm of
Walsh-Fejér kernels. J. Math. Anal. Appl.
2018, 457 (1), 153–178.
- Weisz F. Cesáro summability of one-and two-dimensional
Walsh-Fourier series. Anal. Math. 1996,
22 (3), 229–242.
- Weisz F. Summability of multi-dimensional Fourier series and Hardy
spaces. In: Mathematics and its Applications, 541. Kluwer Academic
Publishers, Dordrecht, 2002.
- Yano S. On approximation by Walsh functions. Proc. Amer.
Math. Soc. 1951, 2 (6), 962–967.
doi:10.2307/2031716