References
- Akyol M.A. Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. J. Math. Stat. 2017, 46 (2), 177–192.
- Barbosa E., Ribeiro E.Jr. On conformal solutions of the Yamabe flow. Arch. Math. 2013, 101, 79–89. doi:10.1007/s00013-013-0533-0
- Blaga A.M. \(\eta\)-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015, 20, 1–13.
- Blaga A.M. \(\eta\)-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat 2016, 30 (2), 489–496.
doi:10.2298/FIL1602489B
- Blaga A.M. On gradient \(\eta\)-Einstein solitons. Kragujevac J. Math. 2018, 42, 229–237.
doi:10.5937/KGJMATH1802229B
- Blaga A.M., Perktaş S.Y., Acet B.E., Erdoğan F.E. \(\eta\)-Ricci solitons in (\(\epsilon\))-almost paracontact metric manifolds. Glas. Mat. Ser. III 2018, 53 (1), 205–220. doi:10.3336/gm.53.1.14
- Blaga A.M., Dey C. The critical point equation on 3-dimensional \(\alpha\)-cosymplectic manifolds. Kyungpook Math. J. 2020, 60, 177–183. doi:10.5666/KMJ.2020.60.1.177
- Blair D.E. Contact Manifolds in Riemannian Geometry. In: Morel J.-M., Teissier B. (Eds.) Lecture Notes in Mathematics, 509. Springer-Verlag, Berlin, 1976.
- Catino G., Mazzieri L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. doi:10.1016/j.na.2015.10.021
- Catino G., Cremaschi L., Djadli Z., Mantegazza C., Mazzieri L. The Ricci-Bourguignon flow. Pacific J. Math. 2017, 287 (2), 337–370. doi:10.2140/PJM.2017.287.337
- Cho J.T., Kimura M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. (2) 2009, 61 (2), 205–212. doi:10.2748/tmj/1245849443
- De K., De U.C. \(\eta\)-Ricci solitons on Kenmotsu 3-manifolds. An. Univ. Vest Timiş. Ser. Mat.-Inform. 2018, 56 (1), 51–63. doi:10.2478/awutm-2018-0004
- Eisenhart L.P. Riemannian Geometry. Princeton University Press, Princeton, 1949.
- Guler S., Crasmareanu M. Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish J. Math. 2019, 43 (5), 2631–2641. doi:10.3906/mat-1902-38
- Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237-261. doi:10.1090/conm/071/954419
- Hamilton R.S. Lectures on geometric flows, 1989. (unpublished)
- Haseeb A., De U.C. \(\eta\)-Ricci solitons in \(\epsilon\)-Kenmotsu manifolds. J. Geom. 2019, 10, article number 34. doi:10.1007/s00022-019-0490-2
- Haseeb A., Prakasha D.G., Harish H. *-conformal \(\eta\)-Ricci solitons on \(\alpha\)-cosymplectic manifolds. Int. J. Anal. Appl. 2021, 19 (2), 165–179.
- Kar D., Majhi P., De U.C. \(\eta\)-Ricci solitons on 3-dimensional \(N(k)\)-contact metric manifolds. Acta Univ. Apulensis 2018, 54, 71–88. doi:10.17114/j.aua.2018.54.06
- Kim T.W., Pak H.K. Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. 2005, 21 (4), 841–846. doi:10.1007/s10114-004-0520-2
- Özturk H., Murathan C., Aktan N., Vanli A.T. Almost \(\alpha\)-cosymplectic f-manifolds. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2014, 60 (1), 211–226. doi:10.2478/aicu-2013-0030
- Sardar A., De U.C. \(\eta\)-Ricci solitons on para-Kenmotsu manifolds. Differ. Geom. Dyn. Syst. 2020, 22, 218–228.
- Sarkar A., Biswas G.G. Ricci solitons on three dimensional generalized Sasakian space forms with quasi Sasakian metric. Afr. Mat. 2020, 31 (3–4), 445–463. doi:10.1007/s13370-019-00735-7
- Sarkar A., Sardar A. \(\eta\)-Ricci solitons on \(N(k)\)-Contact Metric Manifolds. Filomat 2021, 35 (11), 3879–3889. doi:10.2298/FIL2111879S
- Wang Y. Ricci solitons on almost Co-Kähler Manifolds. Canad. Math. Bull. 2019, 62 (4), 912–922.
doi:10.4153/S0008439518000632
- Wang Y. Ricci solitons on almost Kenmotsu 3-manifolds. Open Math. 2017, 15 (1), 1236–1243.
doi:10.1515/math-2017-0103
- Wang Y., Liu X. Ricci solitons on three-dimensional \(\eta\)-Einstein almost Kenmotsu manifolds. Taiwanese J. Math. 20158, 19 (1), 91–100. doi:10.11650/tjm.19.2015.4094