References

  1. Akyol M.A. Conformal anti-invariant submersions from cosymplectic manifolds. Hacet. J. Math. Stat. 2017, 46 (2), 177–192.
  2. Barbosa E., Ribeiro E.Jr. On conformal solutions of the Yamabe flow. Arch. Math. 2013, 101, 79–89. doi:10.1007/s00013-013-0533-0
  3. Blaga A.M. \(\eta\)-Ricci solitons on para-Kenmotsu manifolds. Balkan J. Geom. Appl. 2015, 20, 1–13.
  4. Blaga A.M. \(\eta\)-Ricci solitons on Lorentzian para-Sasakian manifolds. Filomat 2016, 30 (2), 489–496. doi:10.2298/FIL1602489B
  5. Blaga A.M. On gradient \(\eta\)-Einstein solitons. Kragujevac J. Math. 2018, 42, 229–237. doi:10.5937/KGJMATH1802229B
  6. Blaga A.M., Perktaş S.Y., Acet B.E., Erdoğan F.E. \(\eta\)-Ricci solitons in (\(\epsilon\))-almost paracontact metric manifolds. Glas. Mat. Ser. III 2018, 53 (1), 205–220. doi:10.3336/gm.53.1.14
  7. Blaga A.M., Dey C. The critical point equation on 3-dimensional \(\alpha\)-cosymplectic manifolds. Kyungpook Math. J. 2020, 60, 177–183. doi:10.5666/KMJ.2020.60.1.177
  8. Blair D.E. Contact Manifolds in Riemannian Geometry. In: Morel J.-M., Teissier B. (Eds.) Lecture Notes in Mathematics, 509. Springer-Verlag, Berlin, 1976.
  9. Catino G., Mazzieri L. Gradient Einstein solitons. Nonlinear Anal. 2016, 132, 66–94. doi:10.1016/j.na.2015.10.021
  10. Catino G., Cremaschi L., Djadli Z., Mantegazza C., Mazzieri L. The Ricci-Bourguignon flow. Pacific J. Math. 2017, 287 (2), 337–370. doi:10.2140/PJM.2017.287.337
  11. Cho J.T., Kimura M. Ricci solitons and real hypersurfaces in a complex space form. Tohoku Math. J. (2) 2009, 61 (2), 205–212. doi:10.2748/tmj/1245849443
  12. De K., De U.C. \(\eta\)-Ricci solitons on Kenmotsu 3-manifolds. An. Univ. Vest Timiş. Ser. Mat.-Inform. 2018, 56 (1), 51–63. doi:10.2478/awutm-2018-0004
  13. Eisenhart L.P. Riemannian Geometry. Princeton University Press, Princeton, 1949.
  14. Guler S., Crasmareanu M. Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish J. Math. 2019, 43 (5), 2631–2641. doi:10.3906/mat-1902-38
  15. Hamilton R.S. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237-261. doi:10.1090/conm/071/954419
  16. Hamilton R.S. Lectures on geometric flows, 1989. (unpublished)
  17. Haseeb A., De U.C. \(\eta\)-Ricci solitons in \(\epsilon\)-Kenmotsu manifolds. J. Geom. 2019, 10, article number 34. doi:10.1007/s00022-019-0490-2
  18. Haseeb A., Prakasha D.G., Harish H. *-conformal \(\eta\)-Ricci solitons on \(\alpha\)-cosymplectic manifolds. Int. J. Anal. Appl. 2021, 19 (2), 165–179.
  19. Kar D., Majhi P., De U.C. \(\eta\)-Ricci solitons on 3-dimensional \(N(k)\)-contact metric manifolds. Acta Univ. Apulensis 2018, 54, 71–88. doi:10.17114/j.aua.2018.54.06
  20. Kim T.W., Pak H.K. Canonical foliations of certain classes of almost contact metric structures. Acta Math. Sin. 2005, 21 (4), 841–846. doi:10.1007/s10114-004-0520-2
  21. Özturk H., Murathan C., Aktan N., Vanli A.T. Almost \(\alpha\)-cosymplectic f-manifolds. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 2014, 60 (1), 211–226. doi:10.2478/aicu-2013-0030
  22. Sardar A., De U.C. \(\eta\)-Ricci solitons on para-Kenmotsu manifolds. Differ. Geom. Dyn. Syst. 2020, 22, 218–228.
  23. Sarkar A., Biswas G.G. Ricci solitons on three dimensional generalized Sasakian space forms with quasi Sasakian metric. Afr. Mat. 2020, 31 (3–4), 445–463. doi:10.1007/s13370-019-00735-7
  24. Sarkar A., Sardar A. \(\eta\)-Ricci solitons on \(N(k)\)-Contact Metric Manifolds. Filomat 2021, 35 (11), 3879–3889. doi:10.2298/FIL2111879S
  25. Wang Y. Ricci solitons on almost Co-Kähler Manifolds. Canad. Math. Bull. 2019, 62 (4), 912–922. doi:10.4153/S0008439518000632
  26. Wang Y. Ricci solitons on almost Kenmotsu 3-manifolds. Open Math. 2017, 15 (1), 1236–1243. doi:10.1515/math-2017-0103
  27. Wang Y., Liu X. Ricci solitons on three-dimensional \(\eta\)-Einstein almost Kenmotsu manifolds. Taiwanese J. Math. 20158, 19 (1), 91–100. doi:10.11650/tjm.19.2015.4094