References
- Agarwal R.P., Dos Santos J.P.C., Cuevas C. Analytic resolvent
operator and existence results for fractional integrodifferential
equations. J. Abstr. Differ. Equ. Appl. 2012, 2
(2), 26–47.
- Alikhanov A.A. Boundary value problems for the diffusion equation
of the variable order in differential and difference settings.
Appl. Math. Comput. 2012, 219 (8), 3938–3946.
doi:10.1016/j.amc.2012.10.029
- Atanacković T.M., Pilipović S., Stanković B., Zorica D. Fractional
Calculus with Applications in Mechanics: Vibrations and Diffusion
Processes. John Wiley & Sons, Hoboken, NJ, USA, 2014.
- Balachandran K., Annapoorani N., Kim J.K. Existence of mild
solutions of neutral evolution integrodifferential equations.
Nonlinear. Funct. Anal. Appl. 2011, 16 (2),
141–153.
- Bazhlekova E., Jin B., Lazarov R., Zhou Z. An analysis of the
Rayleigh-Stokes problem for a generalized second-grade fluid.
Numer. Math. 2015, 131, 1–31.
doi:10.1007/s00211-014-0685-2
- Caputo M. Diffusion of fluids in porous media with memory.
Geothermics 1999, 28 (1), 113–130. doi:10.1016/S0375-6505(98)00047-9
- Caputo M. Models of flux in porous media with memory. Water
Resources Res. 2000, 36 (3), 693–705. doi:10.1029/1999WR900299
- Chepyzhov V., Miranville A. On trajectory and global attractors
for semilinear heat equations with fading memory. Indiana Univ.
Math. J. 2006, 55 (1), 119–168.
- Clement Ph., MacCamy R.C., Nohel J.A. Asymptotic properties of
solutions of nonlinear abstract Volterra equations. J. Integral
Equations Appl. 1981, 3 (3), 185–216.
- Clement Ph., Nohel J.A. Asymptotic behavior of solutions of
nonlinear Volterra equations with completely positive kernels. SIAM
J. Math. Anal. 1981, 12 (4), 514–535.
doi:10.1137/0512045
- Coleman B.D., Gurtin M.E. Equipresence and constitutive equations
for rigid heat conductors. Z. Angew. Math. Phys. 1967,
18, 199–208. doi:10.1007/BF01596912
- Da Prato G., Iannelli M. Existence and regularity for a class of
integrodifferential equations of parabolic type. J. Math. Anal.
Appl. 1985, 112 (1), 36–55.
doi:10.1016/0022-247X(85)90275-6
- Da Prato G., Lunardi A. Solvability on the real line of a class
of linear Volterra integrodifferential equations of parabolic type.
Ann. Mat. Pura Appl. (4) 1988, 150 (4), 67–117.
doi:10.1007/BF01761464
- Dos Santos J.P.C. Fractional resolvent operator with \(\alpha
\in (0,1)\) and applications. Fract. Differ. Calc. 2019,
9 (2), 187–208. doi:10.7153/fdc-2019-09-13
- Fang Z.B., Qiu L.R. Global existence and uniform energy decay
rates for the semilinear parabolic equation with a memory term and mixed
boundary condition. Abstr. Appl. Anal. 2013, 2013,
article ID 532935. doi:10.1155/2013/532935
- Fetecau C., Jamil M., Fetecau C., Vieru D. The Rayleigh–Stokes
problem for an edge in a generalized Oldroyd-B fluid. Z. Angew.
Math. Phys. 2009, 60 (5), 921–933.
doi:10.1007/s00033-008-8055-5
- Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler
functions, related topics and applications. In: Kim M., Wendland K.
(Eds.) Springer Monographs in Mathematics. Springer, New York, NY, USA,
2020.
- Greenenko A.A., Chechkin A.V., Shul’ga N.F. Anomalous diffusion
and Lévy flights in channelling. Phys. Lett. A 2014,
324 (1), 82–85. doi:10.1016/j.physleta.2004.02.053
- Krasnoschok M., Pata V., Vasylyeva N. Semilinear subdiffusion
with memory in the one-dimensional case. Nonlinear Anal. 2017,
165, 1–17. doi:10.1016/j.na.2017.09.004
- Krasnoschok M., Pata V., Vasylyeva N. Solvability of linear
boundary value problems for subdiffusion equations with memory. J.
Integral Equations Appl. 2018, 30 (3), 417–445.
doi:10.1216/JIE-2018-30-3-417
- Krasnoschok M., Pata V., Vasylyeva N. Semilinear subdiffusion
with memory in multidimensional case. Math. Nachr. 2019,
292 (7), 1490–1513. doi:10.1002/mana.201700405
- Lan D. Regulariy and stability analysis for semilinear
generalized Rayleigh-Stokes equations. Evol. Equ. Control Theory
2022, 11 (1), 259–282. doi:10.3934/eect.2021002
- Li C.J., Qiu L.R., Fang Z.B. General decay rate estimates for a
semilinear parabolic equation with memory term and mixed boundary
condition. Bound. Value Probl. 2014, 197 (2014),
article number 197. doi:10.1186/s13661-014-0197-0
- Lunardi A. Laplace transform methods in integrodifferential
equations. J. Integral Equations Appl. 1985, 10
(1/3), 185–211.
- Lunardi A. On the linear heat equation with fading memory.
SIAM J. Math. Anal. 1990, 21 (5), 1213–1224.
doi:10.1137/0521066
- MacCamy R.C. An integro-differential equation with application in
heat flow. Quart. Appl. Math. 1977, 35 (1), 1–19.
doi:10.1090/QAM/452184
- Magin R.L. Fractional Calculus in Bioengineering. Begell House Publ.
Inc., Redding, CA, USA, 2006.
- Munteanu I. Stabilization of semilinear heat equations, with
fading memory, by boundary feedbacks. J. Differential Equations
2015, 259 (2), 454–472.
doi:10.1016/j.jde.2015.02.010
- Nachlinger R.R., Nunziato J.W. Stability of uniform temperature
fields in linear heat conductors with memory. Internat. J. Engrg.
Sci. 1976, 14 (8), 693–701.
doi:10.1016/0020-7225(76)90025-2
- Nunziato J.M. On heat conduction in materials with memory.
Quart. Appl. Math. 1971, 29 (2), 187–204. doi:10.1090/QAM/295683
- Podlubny I. Fractional Differential Equations. In: Mathematics in
Science and Engineering, 198. Academic Press, San Diego, CA, USA,
1999.
- Shen F., Tan W., Zhao Y., Masuoka T. The Rayleigh-Stokes problem
for a heated generalized second grade fluid with fractional derivative
model. Nonlinear Anal. Real World Appl. 2006, 7
(5), 1072–1080. doi:10.1016/j.nonrwa.2005.09.007
- Tatar N.-E., Kerbal S., Al-Ghassani A. Stability of solutions for
a heat equation with memory. Electron. J. Differential Equations
2017, 2017 (303), 1–16.
- Yan L., Chen Y.Q., Podlubny I. Stability of fractional-order
nonlinear dynamic systems: Lyapunov direct method and generalized Mittag
Leffler stability. Comput. Math. Appl. 2010, 59
(5), 1810–1821. doi:10.1016/j.camwa.2009.08.019