References

  1. Agarwal R.P., Dos Santos J.P.C., Cuevas C. Analytic resolvent operator and existence results for fractional integrodifferential equations. J. Abstr. Differ. Equ. Appl. 2012, 2 (2), 26–47.
  2. Alikhanov A.A. Boundary value problems for the diffusion equation of the variable order in differential and difference settings. Appl. Math. Comput. 2012, 219 (8), 3938–3946. doi:10.1016/j.amc.2012.10.029
  3. Atanacković T.M., Pilipović S., Stanković B., Zorica D. Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes. John Wiley & Sons, Hoboken, NJ, USA, 2014.
  4. Balachandran K., Annapoorani N., Kim J.K. Existence of mild solutions of neutral evolution integrodifferential equations. Nonlinear. Funct. Anal. Appl. 2011, 16 (2), 141–153.
  5. Bazhlekova E., Jin B., Lazarov R., Zhou Z. An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Numer. Math. 2015, 131, 1–31. doi:10.1007/s00211-014-0685-2
  6. Caputo M. Diffusion of fluids in porous media with memory. Geothermics 1999, 28 (1), 113–130. doi:10.1016/S0375-6505(98)00047-9
  7. Caputo M. Models of flux in porous media with memory. Water Resources Res. 2000, 36 (3), 693–705. doi:10.1029/1999WR900299
  8. Chepyzhov V., Miranville A. On trajectory and global attractors for semilinear heat equations with fading memory. Indiana Univ. Math. J. 2006, 55 (1), 119–168.
  9. Clement Ph., MacCamy R.C., Nohel J.A. Asymptotic properties of solutions of nonlinear abstract Volterra equations. J. Integral Equations Appl. 1981, 3 (3), 185–216.
  10. Clement Ph., Nohel J.A. Asymptotic behavior of solutions of nonlinear Volterra equations with completely positive kernels. SIAM J. Math. Anal. 1981, 12 (4), 514–535. doi:10.1137/0512045
  11. Coleman B.D., Gurtin M.E. Equipresence and constitutive equations for rigid heat conductors. Z. Angew. Math. Phys. 1967, 18, 199–208. doi:10.1007/BF01596912
  12. Da Prato G., Iannelli M. Existence and regularity for a class of integrodifferential equations of parabolic type. J. Math. Anal. Appl. 1985, 112 (1), 36–55. doi:10.1016/0022-247X(85)90275-6
  13. Da Prato G., Lunardi A. Solvability on the real line of a class of linear Volterra integrodifferential equations of parabolic type. Ann. Mat. Pura Appl. (4) 1988, 150 (4), 67–117. doi:10.1007/BF01761464
  14. Dos Santos J.P.C. Fractional resolvent operator with \(\alpha \in (0,1)\) and applications. Fract. Differ. Calc. 2019, 9 (2), 187–208. doi:10.7153/fdc-2019-09-13
  15. Fang Z.B., Qiu L.R. Global existence and uniform energy decay rates for the semilinear parabolic equation with a memory term and mixed boundary condition. Abstr. Appl. Anal. 2013, 2013, article ID 532935. doi:10.1155/2013/532935
  16. Fetecau C., Jamil M., Fetecau C., Vieru D. The Rayleigh–Stokes problem for an edge in a generalized Oldroyd-B fluid. Z. Angew. Math. Phys. 2009, 60 (5), 921–933. doi:10.1007/s00033-008-8055-5
  17. Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V. Mittag-Leffler functions, related topics and applications. In: Kim M., Wendland K. (Eds.) Springer Monographs in Mathematics. Springer, New York, NY, USA, 2020.
  18. Greenenko A.A., Chechkin A.V., Shul’ga N.F. Anomalous diffusion and Lévy flights in channelling. Phys. Lett. A 2014, 324 (1), 82–85. doi:10.1016/j.physleta.2004.02.053
  19. Krasnoschok M., Pata V., Vasylyeva N. Semilinear subdiffusion with memory in the one-dimensional case. Nonlinear Anal. 2017, 165, 1–17. doi:10.1016/j.na.2017.09.004
  20. Krasnoschok M., Pata V., Vasylyeva N. Solvability of linear boundary value problems for subdiffusion equations with memory. J. Integral Equations Appl. 2018, 30 (3), 417–445. doi:10.1216/JIE-2018-30-3-417
  21. Krasnoschok M., Pata V., Vasylyeva N. Semilinear subdiffusion with memory in multidimensional case. Math. Nachr. 2019, 292 (7), 1490–1513. doi:10.1002/mana.201700405
  22. Lan D. Regulariy and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evol. Equ. Control Theory 2022, 11 (1), 259–282. doi:10.3934/eect.2021002
  23. Li C.J., Qiu L.R., Fang Z.B. General decay rate estimates for a semilinear parabolic equation with memory term and mixed boundary condition. Bound. Value Probl. 2014, 197 (2014), article number 197. doi:10.1186/s13661-014-0197-0
  24. Lunardi A. Laplace transform methods in integrodifferential equations. J. Integral Equations Appl. 1985, 10 (1/3), 185–211.
  25. Lunardi A. On the linear heat equation with fading memory. SIAM J. Math. Anal. 1990, 21 (5), 1213–1224. doi:10.1137/0521066
  26. MacCamy R.C. An integro-differential equation with application in heat flow. Quart. Appl. Math. 1977, 35 (1), 1–19. doi:10.1090/QAM/452184
  27. Magin R.L. Fractional Calculus in Bioengineering. Begell House Publ. Inc., Redding, CA, USA, 2006.
  28. Munteanu I. Stabilization of semilinear heat equations, with fading memory, by boundary feedbacks. J. Differential Equations 2015, 259 (2), 454–472. doi:10.1016/j.jde.2015.02.010
  29. Nachlinger R.R., Nunziato J.W. Stability of uniform temperature fields in linear heat conductors with memory. Internat. J. Engrg. Sci. 1976, 14 (8), 693–701. doi:10.1016/0020-7225(76)90025-2
  30. Nunziato J.M. On heat conduction in materials with memory. Quart. Appl. Math. 1971, 29 (2), 187–204. doi:10.1090/QAM/295683
  31. Podlubny I. Fractional Differential Equations. In: Mathematics in Science and Engineering, 198. Academic Press, San Diego, CA, USA, 1999.
  32. Shen F., Tan W., Zhao Y., Masuoka T. The Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal. Real World Appl. 2006, 7 (5), 1072–1080. doi:10.1016/j.nonrwa.2005.09.007
  33. Tatar N.-E., Kerbal S., Al-Ghassani A. Stability of solutions for a heat equation with memory. Electron. J. Differential Equations 2017, 2017 (303), 1–16.
  34. Yan L., Chen Y.Q., Podlubny I. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag Leffler stability. Comput. Math. Appl. 2010, 59 (5), 1810–1821. doi:10.1016/j.camwa.2009.08.019