References
- Amanov T.I. Representation and imbedding theorems for function
spaces \(S^{(r)}_{p,\theta}B(\mathbb{R}_n)\) and
\(S^{(r)_*}_{p,\theta}B\), (\(0\leq x_j\leq 2\pi\); \(j=1,\ldots,n\)). Tr. Mat. Inst.
Steklova 1965, 77, 5–34. (in Russian)
- Berezansky Yu.M., Sheftel Z.G., Us G.F. Functional Analysis. Vol. 1.
Institute of Matematics of NAS of Ukraine, Kyiv, 2010.
- Besov O.V. Investigation of one family of functional spaces in
connection with the embedding and continuation theorems. Tr. Mat.
Inst. Steklova 1961, 60, 42–81. (in Russian)
- Besov O.V., Il’in V.P., Nikol’skii S.M. Integral Representations of
Functions and Embedding Theorems. Nauka, Moscow, 1996. (in Russian)
- Lizorkin P.I. Generalized Hölder spaces \(B^{(r)}_{p,\theta}\) and their relation
with the Sobolev spaces \(L^{(r)}_p\). Sib. Math. J. 1968,
9 (5), 837–858. doi:10.1007/BF01041168 (translation of
Sibirsk. Mat. Zh. 1968, 9 (5), 1127–1152. (in
Russian))
- Lizorkin P.I. Generalized Liouville differentiation and the
multiplier method in the theory of imbeddings of classes of
differentiable functions. Proc. Steklov Inst. Math. 1969,
105, 105–202. (translation of Tr. Mat. Inst. Steklova
1969, 105, 89–167. (in Russian))
- Myroniuk V.V. Approximation of functions from the isotropic
classes \(B^{\Omega}_{1,\theta}(\mathbb{R}^d)\) by
entire functions of exponential type. Zb. Pr. Inst. Mat. NAN Ukr.,
Collection of Works “Approximation Theory of Functions and Related
Problems” 2013, 10 (1), 169–183. (in Ukrainian)
- Myroniuk V.V., Yanchenko S.Ya. Approximation of functions from
generalized Nikol’skii-Besov classes by entire functions in Lebesgue
spaces. Mat. Stud. 2013, 39 (2), 190–202. (in
Ukrainian)
- Nikol’skii S.M. Approximation of Functions of Many Variables and
Imbedding Theorems. Nauka, Moscow, 1969. (in Russian)
- Nikol’skii S.M. Embedding theorems for the classes of generalized
functions. Sib. Math. J. 1968, 9 (5), 821–837.
doi:10.1007/BF01041167 (translation of Sibirsk. Mat. Zh. 1968,
9 (5), 1107–1126. (in Russian))
- Nikol’skii S.M. Inequalities for entire functions of finite power
and their application to the theory of differentiable functions of many
variables. Tr. Mat. Inst. Steklova 1951, 38,
244–278. (in Russian)
- Nikol’skii S.M. On one family of functional spaces. Uspekhi
Mat. Nauk 1956, 11 (6 (72)), 203–212. (in Russian)
- Romanyuk A.S. Approximative characteristics of the isotropic
classes of periodic functions of many variables. Ukrainian Math. J.
2009, 61 (4), 613–626.
doi:10.1007/s11253-009-0232-y (translation of Ukrain. Mat. Zh.
2009, 61 (4), 513–523. (in Russian))
- Romanyuk A.S. Approximation of the isotropic classes \(B^r_{p,\theta}\) of periodic functions of
many variables in the space \(L_q\). Zb. Pr. Inst. Mat. NAN Ukr.,
Collection of Works “Approximation Theory of Functions and Related
Problems” 2008, 5 (1), 263–278 (in Russian).
- Romanyuk A.S., Romanyuk V.S. Trigonometric and orthoprojection
widths of classes of periodic functions of many variables.
Ukrainian Math. J. 2009, 61 (10), 1589–1609.
doi:10.1007/s11253-010-0300-3 (translation of Ukrain. Mat. Zh. 2009,
61 (10), 1348–1366. (in Russian))
- Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow,
1981. (in Russian)
- Heping W., Yongsheng S. Approximation of multivariate functions
with a certain mixed smoothness by entire functions. Northeast.
Math. J. 1995, 11 (4), 454–466.
- Yachenko S.Ya. Approximation of functions from the isotropic
Nikol’skii-Besov classes in the uniform and integral metrics.
Ukrainian Math. J. 2016, 67 (10), 1599–1610.
doi:10.1007/s11253-016-1175-8 (translation of Ukrain. Mat. Zh. 2015,
67 (10), 1423–1433. (in Ukrainian))
- Yanchenko S.Ya. Approximation of the classes \(S^{r}_{p,\theta}B(\mathbb{R}^d)\) of
functions of many variables by entire functions of a special form.
Ukrainian Math. J. 2011, 62 (8), 1307–1325.
doi:10.1007/s11253-011-0431-1 (translation of Ukrain. Mat. Zh. 2010,
62 (8), 1124–1138 (in Ukrainian))
- Yanchenko S.Ya. Approximation of the Nikolskii-Besov functional
classes by entire functions of a special form. Carpathian Math.
Publ. 2020, 12 (1), 148–156.
doi:10.15330/cmp.12.1.148-156
- Yanchenko S.Ya. Estimates for approximative characteristics of
classes \(S^r_{p,\theta}B(\mathbb{R}^d)\) of
functions in the uniform metric. Zb. Pr. Inst. Mat. NAN Ukr.,
Collection of Works “Approximation Theory of Functions and Related
Problems” 2013, 10 (1), 328–340. (in Ukrainian)