References

  1. Amanov T.I. Representation and imbedding theorems for function spaces \(S^{(r)}_{p,\theta}B(\mathbb{R}_n)\) and \(S^{(r)_*}_{p,\theta}B\), (\(0\leq x_j\leq 2\pi\); \(j=1,\ldots,n\)). Tr. Mat. Inst. Steklova 1965, 77, 5–34. (in Russian)
  2. Berezansky Yu.M., Sheftel Z.G., Us G.F. Functional Analysis. Vol. 1. Institute of Matematics of NAS of Ukraine, Kyiv, 2010.
  3. Besov O.V. Investigation of one family of functional spaces in connection with the embedding and continuation theorems. Tr. Mat. Inst. Steklova 1961, 60, 42–81. (in Russian)
  4. Besov O.V., Il’in V.P., Nikol’skii S.M. Integral Representations of Functions and Embedding Theorems. Nauka, Moscow, 1996. (in Russian)
  5. Lizorkin P.I. Generalized Hölder spaces \(B^{(r)}_{p,\theta}\) and their relation with the Sobolev spaces \(L^{(r)}_p\). Sib. Math. J. 1968, 9 (5), 837–858. doi:10.1007/BF01041168 (translation of Sibirsk. Mat. Zh. 1968, 9 (5), 1127–1152. (in Russian))
  6. Lizorkin P.I. Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of classes of differentiable functions. Proc. Steklov Inst. Math. 1969, 105, 105–202. (translation of Tr. Mat. Inst. Steklova 1969, 105, 89–167. (in Russian))
  7. Myroniuk V.V. Approximation of functions from the isotropic classes \(B^{\Omega}_{1,\theta}(\mathbb{R}^d)\) by entire functions of exponential type. Zb. Pr. Inst. Mat. NAN Ukr., Collection of Works “Approximation Theory of Functions and Related Problems” 2013, 10 (1), 169–183. (in Ukrainian)
  8. Myroniuk V.V., Yanchenko S.Ya. Approximation of functions from generalized Nikol’skii-Besov classes by entire functions in Lebesgue spaces. Mat. Stud. 2013, 39 (2), 190–202. (in Ukrainian)
  9. Nikol’skii S.M. Approximation of Functions of Many Variables and Imbedding Theorems. Nauka, Moscow, 1969. (in Russian)
  10. Nikol’skii S.M. Embedding theorems for the classes of generalized functions. Sib. Math. J. 1968, 9 (5), 821–837. doi:10.1007/BF01041167 (translation of Sibirsk. Mat. Zh. 1968, 9 (5), 1107–1126. (in Russian))
  11. Nikol’skii S.M. Inequalities for entire functions of finite power and their application to the theory of differentiable functions of many variables. Tr. Mat. Inst. Steklova 1951, 38, 244–278. (in Russian)
  12. Nikol’skii S.M. On one family of functional spaces. Uspekhi Mat. Nauk 1956, 11 (6 (72)), 203–212. (in Russian)
  13. Romanyuk A.S. Approximative characteristics of the isotropic classes of periodic functions of many variables. Ukrainian Math. J. 2009, 61 (4), 613–626. doi:10.1007/s11253-009-0232-y (translation of Ukrain. Mat. Zh. 2009, 61 (4), 513–523. (in Russian))
  14. Romanyuk A.S. Approximation of the isotropic classes \(B^r_{p,\theta}\) of periodic functions of many variables in the space \(L_q\). Zb. Pr. Inst. Mat. NAN Ukr., Collection of Works “Approximation Theory of Functions and Related Problems” 2008, 5 (1), 263–278 (in Russian).
  15. Romanyuk A.S., Romanyuk V.S. Trigonometric and orthoprojection widths of classes of periodic functions of many variables. Ukrainian Math. J. 2009, 61 (10), 1589–1609. doi:10.1007/s11253-010-0300-3 (translation of Ukrain. Mat. Zh. 2009, 61 (10), 1348–1366. (in Russian))
  16. Vladimirov V.S. Equations of Mathematical Physics. Nauka, Moscow, 1981. (in Russian)
  17. Heping W., Yongsheng S. Approximation of multivariate functions with a certain mixed smoothness by entire functions. Northeast. Math. J. 1995, 11 (4), 454–466.
  18. Yachenko S.Ya. Approximation of functions from the isotropic Nikol’skii-Besov classes in the uniform and integral metrics. Ukrainian Math. J. 2016, 67 (10), 1599–1610. doi:10.1007/s11253-016-1175-8 (translation of Ukrain. Mat. Zh. 2015, 67 (10), 1423–1433. (in Ukrainian))
  19. Yanchenko S.Ya. Approximation of the classes \(S^{r}_{p,\theta}B(\mathbb{R}^d)\) of functions of many variables by entire functions of a special form. Ukrainian Math. J. 2011, 62 (8), 1307–1325. doi:10.1007/s11253-011-0431-1 (translation of Ukrain. Mat. Zh. 2010, 62 (8), 1124–1138 (in Ukrainian))
  20. Yanchenko S.Ya. Approximation of the Nikol’skii-Besov functional classes by entire functions of a special form. Carpathian Math. Publ. 2020, 12 (1), 148–156. doi:10.15330/cmp.12.1.148-156
  21. Yanchenko S.Ya. Estimates for approximative characteristics of classes \(S^r_{p,\theta}B(\mathbb{R}^d)\) of functions in the uniform metric. Zb. Pr. Inst. Mat. NAN Ukr., Collection of Works “Approximation Theory of Functions and Related Problems” 2013, 10 (1), 328–340. (in Ukrainian)