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Approximation of classes of periodic functions of several
variables with given majorant of mixed moduli of continuity

Fedunyk-Yaremchuk O.V.>, Hembars’ka S.B.

In this paper, we continue the study of approximation characteristics of the classes BSB of peri-
odic functions of several variables whose majorant of the mixed moduli of continuity contains both
exponential and logarithmic multipliers. We obtain the exact-order estimates of the orthoprojec-
tive widths of the classes B?ﬁ in the space L;, 1 < p < g < oo, and also establish the exact-order
estimates of approximation for these classes of functions in the space L; by using linear operators
satisfying certain conditions.
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Introduction

Let R?,d > 1, denotes the d-dimensional space with elements x = (xq,...,x4). In what
follows (x,y) = x1y1 + ... + x4y, stands for scalar product. Let L,(7r;), 1 < p < co, be the
space of functions f(x) = f(xy,...,x4), which are 27t-periodic in each variable and summable
in degree p on the cube 77; = H;lzl [0; 27t], endowed with the norm

1/p

£y = 1l = (@07 [ 1FGR)Pax)

Let Lo (714) be the space of essentially bounded functions f(x) = f(xi,...,x;), which are
2m-periodic in each variable, with the norm

1 flleo := 11l 1es(g) = eS8 SUP [ f(2)].

XETy

Further, we assume that for functions f € L,(74) the following additional condition holds

27

; f(x)dx;j =0, j=1,d.

For f € Lp(my),1 < p < oo, andt = (ty,...,t4),t; > 0,j = 1,d, we consider the mixed

modulus of continuity of the order I

Ql(frt>p = sup |’A§1f()”pr
Ihj|<t;, j=T.d
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Approximation of classes of periodic functions of several variables 839

where | € N, Al f(x) = Aill . A;ldf(x) = A;ld (... (Aillf(x))) is a mixed difference of the order
I with a vector step h = (hy,...,hy), and the difference of the /th order with a step /; in the
variable x; is defined as follows
l l 1
Ahjf(x) = Z (—1) _”C?f(xl, ey x]-,l, X]' + Vlh]', xj+1, . ,Xd).
n=0

Let Q(t) = Q(t4, ..., t;) be a given function of the type of a mixed modulus of continuity
of the order /, which satisfies the following conditions:

1) Q(t) > 0if ;> 0,j = 1,d, and Q(t) = 0if [T_; t; = 0;

2) Q(t) is nondecreasing in each variable;

3) Q(mltl,...,mdtd) (H ) ( )form € NN, ] =1,

4) Q)(t) is continuous for ti>0,j=1,d.

We assume that ()(t) satisfies also the conditions (S) and (S;), which are called the Bari-
Stechkin conditions [1]. This means the following.

A function of one variable ¢(7) > 0 satisfies the condition (S) if ¢(7)/7* almost increases
for some « > 0, i.e. there exists a constant C; > 0 independent of 77 and T, such that

0<ug<n<l

i 4

A function ¢(7) > 0 satisfies the condition (S;) if ¢(7)/T" almost decreases for some
0 < v <, i.e. there exists a constant C, > 0 independent of 71 and 1, such that

O<ug<n<l

In the case of d > 1 we say that Q)(t),t € R%, satisfies the conditions (S) and (S;) if Q(¢)
satisfies these conditions in each variable t; for fixed t;, i # j.

Thus, let1 < p < 00,1 < 0 < oo, and let Q)(f) be a given function of the type of a
mixed modulus of continuity of the order /. Then the classes ng are defined in the following
way [22]:

329 ={feLy(m): ”fHBSG <1},

where

Oy (f, 1)\ 0 4 dt; 1 1° Qu(f, )y
s, = { [ (o) TIT) - 1<0<e, [flag, = sup =,

j=1 "]

(the expression t > 0 for t = (t1,...,t;) is equivalentto t; > 0,j = 1,4).

We note that for § = oo the classes B;?e coincide with the classes HS}, which were considered
by N.N. Pustovoitov in [14].

In the subsequent, it will be convenient to use the equivalent (to within absolute constants)
definition of the classes ng. For this purpose, we need the corresponding notations.
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To every vector s = (s1,...,84),5] €N, j = 1,d, we put in correspondence the set

s)={k=(ki,....kq): 2971 < |kj| < 2%, k; € Z,j = 1,d},

and for f € Lp(ﬂ'd), 1 < p < o0, we denote

where

flk) = (2m0)~* f()_””

are the Fourier coefficients of the function f.

Letl < p<o0,1<6 < o0,and let ()(t) be a given function of the type of a mixed modulus
of continuity of the order I that satisfies the conditions 1)-4), (S) and (S;). Then, to within
absolute constants, the classes ng can be defined as follows [22]:

Bp()—{fELP(TCd) Illso, = (ZQ =5)[|6s (f )|y§)1/9§1} for1 <0 <oo, (1)
" 165 ()
B = {1 € Lyt [flsp, = sup ot <1}, 2

Here and below, Q(27°) = Q(271,...,27%),5; € N, j = 1,d.

The given definitions of the classes ng can be extended also to the extreme values p = 1
and p = oo, by modifying the “blocks” Js(f) in (1) and (2). Let V;,(¢) stand for a Vallée-Poussin
kernel of the order 2n — 1, i.e.

2n—1 k—mn
V()—l—l—ZZcoskH—Z ) (1——>coskt.
k=1 k=nt1 n

To every vector s = (s1,...,84),5] €N, j = 1,d, we put in correspondence the polynomial
d
As(x) = H(VZS]‘ (xj) — strl(xj))'

j=1

For f € Ly(my),1 < p < o0, by As(f) we denote the convolution

As(f) i= As(f,x) = (f * As) ().

Then, to within absolute constants, the classes B, 1 < p < oo, can be defined as follows:

p.o’
1/6
B = {f € Lm): fllsg, = (LA ) " <1} for1<o<e, O
™ 145(£)]
Bl = {f € Ly(ma) ¢ g, = sup it <1}, n

We note that relations (3) and (4) were obtained in works [21] and [14], respectively.
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We note also that for Q(f) = H;-izl t]r-j , 0 < r; <, the classes 329 are analogs of the well-
known Besov B;/e, 1 < 6 < o0, and Nikol’skii B;,oo = HZ classes (see, e.g. [9]).
In what follows, we study the classes ng that are defined by the function

d A
———, if 4>0,j=14,
= . ]
Q@) = Oy, ... 1) = 1= 108(1/)) d 5
0, if Ht]' =0.
j=1

Here and below, we consider the logarithms with base 2, and

<logtlj> :max{l,log%}.
+

In addition, we assume that b]- €eR,j= 1,d,and 0 < r < 1. Hence, properties 1) —4) and
the conditions (S) and (S;) are satisfied for the function Q)(¢) of the form (5).

In the present paper, we obtain the exact-order estimates of orthoprojective widths of the
classes ng in the space L;, 1 < p < q < co. We recall that the notion of orthoprojective width
was introduced by V.N. Temlyakov [24].

Let {u;}M, be an orthonormalized system of functions u; € Le(74), f € Lg(m4),
1 < g < co. We set

(Fu) = @)~ [ fmi(o)ax,

where 1; is the function complex conjugate to the function u;.
To every function f € Ly(7ty), 1 < g < o0, we put in correspondence an approximation of
the form

M
;(f/ui)uiz

i.e. the orthogonal projection of the function f onto the subspace generated by the system of
functions {u;}M,. Then for the functional class F C Ly(71;) the quantity

dy(F,L;) = inf sup
M g, e

(6)

M
f - ;(fr ui)ui

q

is called the orthoprojective width (the Fourier-width) of this class in the space L, (7t4).
In addition to orthoprojective widths, we study the quantities d%,(F, L;) introduced by
V.N. Temlyakov (see, e.g. [23]). They are defined by

A8 (F,L,) = inf su —Gfl|.. 7
M( "7) GELM(B)quFm[I))(G) ”f f”q ( )

Here, Ly;(B), stands for a set of linear operators satisfying the following conditions:

a) the domain D(G) of these operators contains all trigonometric polynomials, and their
range is contained in a subspace with dimension M of the space L;(7;);

b) there exists a number B > 1 such that for all vectors k = (ky, ..., k), kj €Z,j= 1,d, the
inequality ||Ge!**)||, < B holds.
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We note that Ly(1), contains the operators of orthogonal projection onto the spaces with
dimension M and the operators that are set on an orthonormalized system of functions with
the help of the multiplier defined by a sequence {A,, } such that |A,,| < 1 for all m.

From (6) and (7), it is easy to see that the quantities dy;(F, L) and d%,(F, L) are connected
with each other by the inequality

dSi(F,Ly) < dy(F, Ly). (8)

At present, a lot of works are known, in which the quantities dy; (F, L) and d%,(F, L,) were
studied for various classes of functions. We mention works [15,17,18,23,25], where the quan-
tities (6) and (7) were considered for the classes of functions of many variables Wy« Hp, B;IQ,
and ng) (see also numerous references therein). Note that the below obtained estimates com-

plement the results established in the works [2—4, 6, 8].

1 Auxiliary assertions

We now give several known assertions, which are used in the subsequent considerations.
As was noted above, ()(t) is a function of the form (5). For natural N, we set

1

X(N) = {s = (s1,..,80): s; €N, j=1,d, Q(27°) > N}' QN) = | ps).

We note that the approximation of certain classes of periodic functions of many variables
with mixed generalized smoothness by trigonometric polynomials with “numbers” of har-
monics from the sets that are analogs of Q(N) was started in work [16]. Later, the approxi-
mations by trigonometric polynomials with “numbers” of harmonics from the sets Q(N) were
studied in works [8,19,20] and other ones.

The following proposition is true.

Lemma 1 ([15]). For the number of elements of the set Q(N), the following ordinal equalities
hold:

ifblg...gbd<7’;

IQ(N)| < N7 (logN) """,

ifrgblg...gbd,b2>r.

Here and below, the notation y; < pyp for positive functions y1(N) and pp(N) means that
there exists a constant C > 0 such that for all N € IN the inequality y#1(N) < Cuy(N) holds.

The relation yq =< pp holds if y1 < pp and yu; > pp. We note also that all constants C;,
i =1,2,...,which are used in what follows, can depend only on parameters that are contained
in the definitions of a class and a dimension d of the space R

Let 90t be certain finite set. By |91, we denote the number of its elements.

To formulate the following assertions, we note that, according to (5), the definition of a set
X(N) takes the form

d
. . b;
X(N) = {s = (s1,.--,84): s €N, j=1,4, | |2rSJs]-’ < N}.
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Denote x - (N) = IN“\ x(N).
Let

) 1 1
@(N):{s:(sl,...,sd): sieN, j=1,d, ﬁgﬂ@ )<N}

In work [12], it was established that the number of elements of the set ©(N) satisfies the
ordinal equality |@(N)| =< (log N)4~1.

Lemma 2 (see, e.g. [23, p. 25]). Let 1 < p < g < o0 and f € Ly(my). Then

19 < 2 165(f) | 21/ p=1/a)ya,

Lemma 3 ([25]). Let A be the linear operator given by the equality Ae'k Em Lak (%),

where { () }le is the set of functions for which || (-)||2 <1, m =1, ..., M. Then for any
trigonometric polynomial t the following inequality holds

M M 1/2
rym?ReAt x—y) < Rez Y Hk)ak,pm(k) < <M Yoy ]alfn?(k)F) :
m=1 m=1 k

Theorem 1 ([11]). Let T,, be a trigonometric polynomial of the order n = (ny,...,ny), i.e.

T(x)= Y ... Y o pe ™,

lki|<ny  |kgql<ng

where nj, j = 1,d, are natural numbers, and Ck, ...k, are any coefficients.
Then for1 < p < q < oo the inequality

p d 1/p—1/q
ITully <2 (Hnj) ITully ©)
=1
holds.

Inequality (9) was established by S.M. Nikol’skii and is called the “inequality of different
metrics”. In the one-dimensional case for p = oo, the corresponding inequality was proved by
D. Jackson [7].

Theorem 2 (Littlewood-Paley theorem; see, e.g. [10, p. 65]). Let p € (1,00). Then there ex-
ist positive numbers C3(p) and C4(p) such that for every function f € Ly(my) the following
relations are true

@Il < || (T1arr) ], < cupifly.

2 Main results

Passing to the statement of the propositions and their proofs, we assume that M = |Q(N)|.
First, we consider case by < ... < by < r. Then, according to Lemma 1, we have

M = Nl/r(log N)—bl/r—...—bd/r+d—1, IOgM — IOg N, N=x Mr(log M)b1+...+bd—(d—1)r.

The following theorem is true.
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Theorem 3. Let 1 < p < g < 00,1 < 6 < g, and let ()(t) be a function of the form (5). Then
for1/p—1/qg<r<l,by <...<bg<r/(q/p—1) the relations

31 (B, Lg) = a3y (B, Lg) = M1/71/3(log M)~ ber@-0(-1/p51/0) (1)
hold.

Proof. First, we establish the upper bounds in (10). According to (8), it is sufficient to obtain
the upper bound for the orthoprojective width di; (B¢} porLa)-

For this purpose, we consider an approximation of the functions f € B;?e by trigonometric
polynomials f5y of the form t5(n)(x) = Lsey(n) s (f, x).

Let go be any number that satlsfles the Conditlon p < qo < q. Then, using Lemma 2, and
the relation ||ds(f)|/g, =< [[As(f)llg0, 1 < go < oo, for f € B;?e we have

rant-- 5, 80 - 5o
SEX q SEXL(N) q
1/q
<<< Y. ||(5S(f)|ygozlsI1(1/qo—1/q)q>
sext(N)

1/q
X( Y. ||As(f)|ygozISI1(1/q0—1/q)q> s

sex*(N)

Then, applying to As(f) the Nikol’skii inequality of different metrics (9), we continue the
estimate as follows

1/q
11<<( y ”As(f)|“’772|5|1(1/l71/170)'12|S|1(1/q01/'1)'1)

sEx*(N)
1/q
=( )3 HAs(f)HZZ'S“(”p”W)
sEx*(N)
1/q
= (5 areiaipaiezier-n)
sEx*(N)
e s 2-allslar=1/p+1/9)\ 7
=| X o7@)IAUNI —7 = I.
sex*(N) szl S]- !
Ifs € x-(N), then2-Ish < N1/rTT4 57"

We get

j

e

Il
—_

quj/r(r—l/wrl/q) 1/q
I < ( Z qu(zfs:)HAg(f)”Zqu/r(rfl/p+1/q) T )
sext(N) j s !

d 1/q
_ n—141/r(1/p-1/ —q(n— q —qb;/r(1/p—1/q)
— N H/r(/p ‘7)( Z Q12 S)HAS(f)”p s, i
sext(N) j=1

1/q
<N 1og) T IOIVI (Y asneeaflp) =
sex*(N)
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Using the inequality (see, e.g. [5, p. 43])

1/vo 1/v
(ZW\”) < (ZW!”) , 1< <y <o,
k k

we have

1/0
Iy < N_1+1/r(1/p—1/q)(logN)(bl/r...bd/r)(l/iﬂl/q)< Z 0—9(2—5)||As(f)||g>
sex*(N)

< N-HH/r/p=1/4)(Jog N)(_bl/r_”'_bd/r)Wp_l/q)Hf||309
p.

< (M (log M)tt-+ba=(d=1)ry=141/r(1/p=1/q) (og pp)(~b1/r=-=ba/7)(1/p=1/q)
_ Mfr+1/p71/q(logM)*bl*~~~*bd+(d*1)(rfl/PﬂLl/Q)_

Thus, in view of the definition of orthoprojective width, the above reasoning gives the
upper bound for dy; (ng, L;), and, respectively, for the quantity df/[(B’%, Ly).

Let us find the lower bounds in (10). Since inequality (8) holds, it is sufficient to obtain the
lower bound for the quantity d%, (B¢ nor La)-

With the help of the reasoning analogous to that in [13], we can prove the existence of a set
©1(N) C O(N) such that for s = (s1,...,5;) € ©1(N) the following relations are satisfied

=1logN, j=1,d, and |©;(N)| = (logN)‘!

Consider the set Q(N) = Usee,(n) p(s).- By T(Q(N)) we denote the set of trigonometric
polynomials with the “numbers” of harmonics from Q(N).
Let K, be the Fejér kernel of the order 1, i.e.

Ki(t) = ¥ <1 - %)eikx_

k| <n

We denote by k° the vector k* = (kil, s, k;‘i), where

i 2514+ 2%72, 5> 2,
1, Sj - 1/] - 1/

Consider the function g(x) = ¥sco,(n) K£°(x), where K*(x) = el(kx) H;lzl K -2 (xj).
Suppose that the operator G belongs to Ly;(B)g, 1 < g < co. Consider the operator A =
S5n) G where S a(N) s the operator of taking partial Fourier sum corresponding to the set

Q(N). Then A € Lyp(B)4 and the range of the operator A is a subspace Ly of the space
T(Q(N)), whose dimension dim £ satisfies dim £); = M < M. It follows from Theorem 2
that for f € T(Q ( )), the relation || f — Afl|; < [|f — Gf|lqis satlsfled

Let {¢m(x } , be an orthonormal basis in £y and Ae'(¥ = YM 4k, (x). Consider
for s € ©1(N) the c operators

Ase'FY) = 3" a5 (Y, x), k€ Q(N).

iMz\
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We put gs(x) = K°(x) and consider the quantities

Is = sup 185(x —y) = As(gs(x —¥))llw, s € O1(N).

We denote 85 = min,—y Re As(gs(x —y)). Then

Is > s (0> - ﬁs- (11)

where we get that

Y opcked ¥ gmdda< (M3 5 whewr)

s€®(N) m=1keQ(N) m=1keQ(N)

1/2 (12)
= MmB( )y \§(k)!2> < MY2B|Q(N)[1/2,
keQ(N)
Further, taking into account the relation |@1(N)| =< (logN) -1 < well as
\p(s)] = 2HSH1 — Nl/r(logN>fb1/r7...fbd/r,
we can write
|Q(N)| = Nl/r(log N)fbl/rf...fbd/rﬁj,l. 13
On the other hand,
2(0) = NY7(log N)~01/7=—ba/r+d=1 — | 5(N)]. "

Using (12) and (13), we can chose a number N such that |Q(N)| < M and the right-hand
side of (14) will be at least twice as large as the right-hand side of (12).
Since ¢(0) = Ysco,(n) 85(0), from (12) and (14) we obtain that there exists an s* € ©;(N)

for which ( |~( 2
B(M|Q(N
30 =P =" e,()]

Then from (11), using the Nikolskii inequality of different metrics, we have that for some
y* the following relations hold

15 (x = y*) = s (K (x =y Nlg = llgs (x —y*) = Bse(gs+ (x =) llg
> 27 A ge (x — y*) = As (g5 (x = y)) [l
= 2‘”5*H1/‘7M(log N)_(d_l) xMl_l/"(logM)_(d_l)(l_l/q).

= M(log N)~ =1,

Consider the function g1 (x) = CsN~1(N'/"(log N)~b1/7=- _bd/r)l/P_lle* (x),Cs > 0.
We can easily verify that the function g1 (x) belongs to the class Bf},, under the correspond-
ing choice of the constant Cs.

p.b’
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Using the Fejér kernel property (see, e.g. [23, p. 166]) || ||, < 2Is"h(1=1/p) 1 < p < o,
we have
1As (g0)llp < N™HNY" (log N)~0/7===ba/myUp=t| =7,
— N—l(Nl/V(logN)—bl/V—---—bd/r)l/ﬁ—lgHS*Hl(l—l/P)
— N—l(Nl/r(logN)—bl/r—...—bd/r)l/p—l(Nl/r(log N)—bl/r—...—bd/r)l—l/p — N_l.

Thus, we can write
/6 —1/9—s* —1/9—s* -1
Isillag, = (T 0 “ae)ll) = 0@ Aw (g1l < Q71N <

So, we conclude that g; € B?Q, with the corresponding constant Cs > 0.
Since [|g1 — Gg1llg > lIg1 — As-g1llg, we get

181(x =¥") = Ggr(x = y")llg
> N—l(Nl/r(logN)—bl/r—...—bd/r)l/p—lH,Cs* (x N y*) — Ay (Ks* (x N y*))Hq
> M_’(log M)_bl_“‘_bd+(d_l)er/p_lMl_l/q(log M)(d—l)(1—1/p)—(d—1)(1—1/q)
_ M—r+1/p—1/q(logM)—b1—...—bd—i-(d—l)(r—l/p—i—l/q)‘

The lower bounds in (10) are established. O

In the following proposition, we consider other relations for the numbers 7, by, ..., b;. Let
r <by <...<by by > r. Inthis case, by Lemma 1, we obtain

M = NV (logN)~"/", logM < logN, N =< M'(logM)™.

Assume that by = ... = b, < by < ... < b;. Then for v = 1 the inequality r < b; < by
holds. Butv > 2, then b; > r.

Theorem 4. Let1 < p < g <oo,1<6 <g,and let Q)(t) be a function of the form (5). Then for
1/p—1/q<r<l,by>r/(q/p—1) the order estimates

dig(BSy, Lg) = dy(BSy, Lg) =< M +1/P=1/0(1og M) ™" (15)
hold.

Proof. For 1 < 6 < g, the embedding BQ C HQ is valid. Therefore, the upper bounds in (15)
follow from the corresponding estimate 1:lL (H?, L), proved in [15].

To get the lower bounds in (15), it is sufficient to get the corresponding lower bound for the
quantity d% (B¢} norLa)-

We choose a vector § = (31,...,8;) € O(N), so, that §; < logN, 8§, = ... =3; = 1, and set
$2(x) = Ks(x) = KKy, 2(x1), where k¥ = (25171 42572, 1, .. 1).

Suppose that the operator G belongs to Ly(B);,1 < g < oco. Consider the operator
A = 5, G, where S, is the operator of taking partial Fourier sum corresponding to the
set p(3).

Taking into account that 2/l < N1/ (log N) N7 and using lemma 3, we get

1/2
I;EnReAgz(x —y) < Ml/zB(Z |§2(k)|2)
k

(16)
< M1/2(2H§H1)1/2 - Ml/Z(Nl/r(logN)_bl/’)l/z.
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On the other hand,
22(0) =< 25 < NV (10g N)~01/7, (17)
Therefore, we can chose a number N so that |Q(N)| < M and the right-hand side of (17)

will be at least twice as large as the right-hand side of (16). For some y* = (vj, ..., y}), for this
N we have

1g2(x —y*) — Ag(x —y") |l > M. (18)

Consider the function g3(x) = CeN~12/5l1(1/p=1 g, (x), Cs > 0. We now show that, at the
corresponding choice of the constant Cg, the function g3 belongs to the class Bi}/e.
Indeed, in view of the properties of the Fejér kernel, we have

1/6 ~ -
Isllag, = (L@ As(gs)lf) "< N2 0D s( )

< 2H§”1(1/”_1)HAg(gz)IIp ~ 2l (1/p=1)5[I5[L(1=1/p) — q .

Hence, g3 € ng with the corresponding constant Cs > 0.

According to Theorem 1, for a trigonometric polynomial ¢t with “numbers” of harmonics
from the set p(§), the relation ||t||e < ||¢]|42/¥I1/7 is satisfied.

Taking into account the last relation and using estimate (18), we get

lga(x = y*) = Gga(x —y*) g > N2/ P Vljgy (x — y*) = Gga(x =y g
> N2 P gy (x = y*) = Aga(x = y)llg
> N2/ p=02= 11179 | g (x — y*) — Ago (¥ — ¥ oo
> M_r(log M)_blMl/p_l/q_lM _ M—r—i—l/p—l/Q(log M)_bl.

The lower bounds in (15) are established. O

At the end of the work we make some comments, paying attention to two important issues.

The first of them is that under the conditions considered in Theorems 3 and 4 for the pa-
rameter 6, the obtained estimates of the approximation characteristics are independent of the
parameter 6. In addition, the estimates obtained in Theorem 4 coincide in order with the esti-
mates of the corresponding characteristics for the classes H, i.e.

dii(Bylg, Lg) = diy(Bolg, Lg) = dyy(Hy}, Lg) = diyy(H}, Ly).

Another, but not less important issue, concerns Theorem 4, in which it is found that the
established estimates of the corresponding characteristics do not depend on the dimension d
of the space IR¥.
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Y poboTi IPOAOBXKYEThCSI BUBYEHHSI allPOKCHMATUBHMX XapaKTEpUCTUK KAacib Bgo nepioay-
YHMX (PYHKIIi baraTbox 3MiHHMX, Ma’kKOpaHTa MilllaHMX MOAYAIB HellepepBHOCTI SIKMX MICTUTb SIK
CTelleHeBi, Tak i Aorapudpmiuni MEHOXHMKN. OAepKaHO TOUHI 3a IOPSIAKOM OLIHKM OPTONPOEKIIil-
HIX IIOIEPeYHMKIB KAAciB BSB y mpoctopi Ly, 1T < p < g < 00, a TaKOX BCTAaHOBAEHO TOYHI 3a
TIOPSIAKOM OLLHKM HabAVDKEHHS X KAACiB YHKIIiA y IpocTopi Ly 3a AOOMOTOIO AiHilHMX OrTe-
paTopiB, sIKi MATOPSIAKOBaHi IeBHMM yMOBaM.

Kntouosi cnoea i ppasu: opTOMPOEKITiVHMI TIOTIepeYHNK, MilllaHVIT MOAYAB HeTlepepBHOCTI, AiHili-
Hi onepartop, siapo Baane-Ilyccena, ssapo @eriepa.



