References

  1. Hardy G.E., Rogers T.D. A generalization of a fixed point theorem of Reich. Canad. Math. Bull. 1973, 16 (2), 201–206. doi:10.4153/CMB-1973-036-0
  2. Suzuki T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340 (2), 1088–1095. doi:10.1016/j.jmaa.2007.09.023
  3. Ali F., Ali J., Nieto J.J. Some observations on generalized non-expansive mappings with an application. Comput. Appl. Math. 2020, 39, article number 74. doi:10.1007/s40314-020-1101-4
  4. Karapınar E., Taş K. Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl. 2011, 61 (11), 3370–3380. doi:10.1016/j.camwa.2011.04.035
  5. Mann W.R. Mean value methods in iteration. Proc. Amer. Math. Soc. 1953, 4, 506–510. doi:10.1090/S0002-9939-1953-0054846-3
  6. Ishikawa S. Fixed points by a new iteration method. Proc. Amer. Math. Soc. 1974, 44 (1), 147–150. doi:10.2307/2039245
  7. Noor M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251 (1), 217–229. doi:10.1006/jmaa.2000.7042
  8. Agarwal R.P., O’Regan D., Sahu D.R. Iterative construction of fixed points of nearly asymptotically non-expansive mappings. J. Nonlinear Convex Anal. 2007, 8 (1), 61–79.
  9. Gürsoy F., Karakaya V. A Picard-S hybrid type iteration method for solving a differantial equation with retarded argument. arXiv: Functional Analysis, 2014. doi:10.48550/arXiv.1403.2546
  10. Thakur B.S., Thakur D., Postolache M. A new iterative scheme for numerical reckoning fixed points of Suzuki’s generalized nonexpansive mappings. Appl. Math. Comput. 2016, 275, 147–155. doi:10.1016/j.amc.2015.11.065
  11. Jubair M., Ali F., Ali J. Convergence and stability of an iteration process and solution of a fractional differential equation. J. Inequal. Appl. 2021, 2021, article number 144. doi:10.1186/s13660-021-02677-w
  12. Bruhat F., Tits J. Groupes réductifs sur un corps local: I. Données radicielles valuées. Publ. Math. Inst. Hautes Études Sci. 1972, 41, 5–251.
  13. Bridson M., Haefliger A. Metric Spaces of Non-Positive Curvature. Springer-Verlag, Berlin, Heidelberg, 1999.
  14. Dhompongsa S., Panyanak B. On \(\triangle\)-convergence theorems in CAT\((0)\) spaces. Comput. Math. Appl. 2008, 56 (10), 2572–2579. doi:10.1016/j.camwa.2008.05.036
  15. Chang S.S., Wang L., Joseph Lee H.W., Chan C.K., Yang L. Demiclosed principle and \(\triangle\)-convergence theorems for total asymptotically nonexpansive mappings in CAT\((0)\) spaces. Appl. Math. Comput. 2012, 219 (5), 2611–2617. doi:10.1016/j.amc.2012.08.095
  16. Dhompongsa S., Kirk W.A., Sims B. Fixed points of uniformly lipschitzian mappings. Nonlinear Anal. 2006, 65, 762–772. doi:10.1016/j.na.2005.09.044
  17. Lim T.C. Remarks on some fixed point theorems. Proc. Amer. Math. Soc. 1976, 60, 179–182. doi:10.1090/S0002-9939-1976-0423139-X
  18. Kirk W.A., Panyanak B.A. A concept of convergence in geodesic spaces. Nonlinear Anal. 2008, 68, 3689–3696. doi:10.1016/j.na.2007.04.011
  19. Dhompongsa S., Kirk W.A., Panyanak B. Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 2007, 8 (1), 35–45.
  20. Senter H.F., Dotson W.G. Approximating fixed points of nonexpansive mappings. Proc. Amer. Math. Soc. 1974, 44 (2), 375–380. doi:10.2307/2040440