References

  1. Belan E.P., Samoilenko A.M. Dynamics of periodic modes of the phenomenological equation of spin combustion. Ukrainian Math. J. 2013, 65 (1), 21–46. doi:10.1007/s11253-013-0763-0 (translation of Ukrain. Mat. Zh. 2013, 65 (1), 21–43. (in Russian))
  2. Bogolyubov N.N., Mitropol'skii Yu.A. Asymptotic methods in the theory of nonlinear oscillations. Nauka, Moscow, 1974. (in Russian)
  3. Eidel'man S.D. Parabolic systems. North-Holland, Amsterdam, 1969.
  4. Fodchuk V.I., Klevchuk I.I. Integral sets and the reduction principle for differential-functional equations. Ukrainian Math. J. 1982, 34 (3),272–277. doi:10.1007/BF01682117 (translation of Ukrain. Mat. Zh. 1982, 34 (3), 334–340. (in Russian))
  5. Guo S., Wu J. Bifurcation theory of functional differential equations. Springer, New York, 2013.
  6. Hale J.K. Theory of Functional Differential Equations. Springer-Verlag, New York, 1977.
  7. Hassard B.D., Kazarinoff N.D., Wan Y.-H. Theory and applications of Hopf bifurcation. Cambridge University Press, Cambridge, 1981.
  8. Henry D. Geometric theory of semilinear parabolic equations. In: Morel J.-M., Teissier B. (Ed.) Lecture Notes in Mathematics, 840. Springer, New York, 1981.
  9. Klevchuk I.I. On the reduction principle for functional-differential equations of neutral type. Differ. Equ. 1999, 35 (4), 464–473. (translation of Differ. Uravn. 1999, 35 (4), 464–472. (in Russian))
  10. Klevchuk I.I. Homoclinic points for a singularly perturbed system of differential equations with delay. Ukrainian Math. J. 2002, 54 (4), 693–699. doi:10.1023/A:1021047730635 (translation of Ukrain. Mat. Zh. 2002, 54 (4), 563–567. (in Ukrainian))
  11. Klevchuk I.I. Bifurcation of the state of equilibrium in the system of nonlinear parabolic equations with transformed argument. Ukrainian Math. J. 1999, 51 (10), 1521–1524. doi:10.1007/BF02981684 (translation of Ukrain. Mat. Zh. 1999, 51 (10), 1342–1351. (in Russian))
  12. Klevchuk I.I. Existence of countably many cycles in hyperbolic systems of differential equations with transformed argument. J. Math. Sci. 2016, 215 (3), 341–349. doi:10.1007/s10958-016-2842-x (translation of Neliniini Kolyvannya 2015, 18 (1), 71–78. (in Ukrainian))
  13. Klevchuk I.I. Bifurcation of self-excited vibrations for parabolic systems with retarded argument and weak diffusion. J. Math. Sci. 2017, 226 (3), 285–295. doi:10.1007/s10958-017-3534-x (translation of Neliniini Kolyvannya 2016, 19 (3), 390–398. (in Ukrainian))
  14. Klevchuk I.I., Fodchuk V.I. Bifurcation of singular points of differential-functional equations. Ukrainian Math. J. 1986, 38 (3), 281–286. doi:10.1007/BF01056824 (translation of Ukrain. Mat. Zh. 1986, 38 (3), 324–330. (in Russian))
  15. Mishchenko E.F., Sadovnichii V.A., Kolesov A.Yu., Rozov N.Kh. Autowave Processes in Nonlinear Media with Diffusion. Fizmatlit. Moscow. 2005. (in Russian)
  16. Samoilenko A.M., Belan E.P. Periodic modes of the phenomenological spin combustion equation. Differ. Equ. 2015, 51 (2), 214–231. doi:10.1134/S001226611502007X (translation of Differ. Uravn. 2015, 51 (2), 211–228. (in Russian))
  17. Wu J. Theory and applications of partial functional differential equations. Springer. New York. 1996.