References

  1. Ahmad I., Ahmad H., Abouelregal A.E., Thounthong P., Abdel-Atay M. Numerical study of integer-order hyperbolic telegraph model arising in physical and related sciences. Eur. Phys. J. Plus 2020, 135, 759. doi:10.1140/epjp/s13360-020-00784-z
  2. Ahmad I., Ahmad H., Inc M., Yao S.W., Almohsen B. Application of local meshless method for the solution of two term time fractional-order multi-dimensional PDE arising in heat and mass transfer. Therm. Sci. 2020, 24 (1), 95–105. doi:10.2298/TSCI20S1095A.
  3. Ahmad I., Ahmad H., Thounthong P., Chu Y.M., Cesarano C. Solution of multi-term time-fractional PDE models arising in mathematical biology and physics by local meshless method. Symmetry 2020, 12 (7), 1195. doi:10.3390/sym12071195
  4. Ahmad H., Akgül A., Khan T.A., Stanimirović P.S., Chu Y.-M. New perspective on the conventional solutions of the nonlinear time-fractional PDEs. Complexity 2020, 2020, 8829017. doi:10.1155/2020/8829017.
  5. Ahmad H., Khan T.A., Ahmad I., Chu Y.-M. A new analyzing technique for nonlinear time fractional Cauchy reaction-diffusion model equations. Results Phys. 2020, 19 103462. doi:10.1016/j.rinp.2020.103462.
  6. Ahmad H., Khan T.A., Stanimirović P.S., Ahmad I. Modified variational iteration technique for the numerical solution of fifth order KdV type equations. Appl. Comput. Mech. 2020, 6, 1220–1227. doi:10.22055/jacm.2020.33305.2197
  7. Ahmad H., Khan T.A., Stanimirović P.S., Chu Y.-M., Ahmad I. Modified variational iteration algorithm-II: convergence and applications to diffusion models. Complexity 2020, 2020, 8841718. doi:10.1155/2020/8841718
  8. Ahmad H., Seadawy A.R., Khan T.A., Thounthong P. Analytic approximate solutions for some nonlinear parabolic dynamical wave equations. J. Taibah Univ. Sci. 2020, 14 (1), 346–358. doi:10.1080/16583655.2020.1741943
  9. Alzaki L.K., Jassim H.K. The approximate analytical solutions of nonlinear fractional ordinary differential equations. Int. J. Nonlinear Anal. Appl. 2021, 12 (2), 527–535. doi:10.22075/ijnaa.2021.5094
  10. Amara A., Etemad S., Rezapour S. Topological degree theory and Caputo-Hadamard fractional boundary value problems. Adv. Differ. Equ. 2020, 2020, 369. doi:10.1186/s13662-020-02833-4
  11. Baleanu D., Etemad S., Rezapour S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. 10.1186/s13661-020-01361-0
  12. Baleanu D., Jajarm A., Mohammadi H., Rezapour S. A new study on the mathematical modeling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134 109705. doi:10.1016/j.chaos.2020.109705
  13. Baleanu D., Jassim H.K., Al Qurashi M. Solving Helmholtz equation with local fractional derivative operators. Fractal Fract. 2019, 3 (3), 43. doi:10.3390/fractalfract3030043
  14. Baleanu D., Jassim H.K. A modification fractional homotopy perturbation method for solving Helmholtz and coupled Helmholtz equations on Cantor sets. Fractal Fract. 2019, 3 (2), 30. doi:10.3390/fractalfract3020030
  15. Baleanu D., Jassim H.K. Approximate solutions of the damped wave equation and dissipative wave equation in fractal strings. Fractal Fract. 2019, 3 (2), 26. doi:10.3390/fractalfract3020026
  16. Baleanu D., Jassim H.K. Approximate analytical solutions of Goursat problem within local fractional operators. J. Nonlinear Sci. Appl. 2016, 9 (6), 4829–4837. doi;10.22436/jnsa.009.06.118
  17. Baleanu D., Jassim H.K. Exact solution of two-dimensional fractional partial differential equations. Fractal Fract. 2020, 4 (2), 21. doi:10.3390/fractalfract4020021
  18. Baleanu D., Jassim H.K., Khan H. A modification fractional variational iteration method for solving nonlinear gas dynamic and coupled KdV equations involving local fractional operators. Therm. Sci. 2018, 22 (1), 165–175. doi:10.2298/TSCI170804283B
  19. Baleanu D., Mousalou A., Rezapour S. On the existence of solutions for some infinite coefficient-symmetric Caputo-Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 2017, 145. doi:10.1186/s13661-017-0867-9
  20. Eaued H.A., Jassim H.K., Mohammed M.G. A novel method for the analytical solution of partial differential equations arising in mathematical physics. IOP Conf. Ser.: Mater. Sci. Eng. 2020, 928, 042037. doi:10.1088/1757-899X/928/4/042037
  21. Fan Z.P., Jassim H.K., Rainna R.K., Yang X.J. Adomian decomposition method for three-dimensional diffusion model in fractal heat transfer involving local fractional derivatives. Therm. Sci. 2015, 19 (1), 137–141. doi:10.2298/TSCI15S1S37F
  22. Inc M., Khan M.N., Ahmad I., Yao S.W., Ahmad H., Thounthong P. Analysing time-fractional exotic options via efficient local meshless method. Results Phys. 2020, 19, 103385. doi:10.1016/j.rinp.2020.103385.
  23. Jafari H., Jassim H.K. Local fractional variational iteration method for nonlinear partial differential equations within local fractional operators. Appl. Appl. Math. 2015, 10 (2), 1055–1065.
  24. Jafari H., Jassim H.K., Moshokoa S.P., Ariyan V.M., Tchier F. Reduced differential transform method for partial differential equations within local fractional derivative operators. Adv. Mech. Eng. 2016, 8 (4) 1–6. doi:10.1177/1687814016633013
  25. Jafari H., Jassim H.K., Tchier F., Baleanu D. On the approximate solutions of local fractional differential equations with local fractional operator. Entropy 2016, 18 (4), 150. doi:10.3390/e18040150
  26. Jafari H., Jassim H.K., Vahidi J. Reduced differential transform and variational iteration methods for 3D diffusion model in fractal heat transfer within local fractional operators. Therm. Sci. 2018, 22 (1), 301–307. doi:10.2298/TSCI170707033J
  27. Jassim H.K. Analytical approximate solutions for local fractional wave equations. Math. Methods Appl. Sci. 2020, 43 (2), 939–947. doi:10.1002/mma.5975
  28. Jassim H.K. A new approach to find approximate solutions of Burger’s and coupled Burger’s equations of fractional order. TWMS J. App. and Eng. Math. 2021, 11 (2), 415–423.
  29. Jassim H.K., Baleanu D. A novel approach for Korteweg-de Vries equation of fractional order. J. Appl. Comput. Mech. 2019, 5 (2), 192–198. doi:10.22055/jacm.2018.25732.1292
  30. Jassim H.K., Kadhim H.A. Fractional Sumudu decomposition method for solving PDEs of fractional order. J. Appl. Comput. Mech. 2021, 7 (1), 302–311. doi:10.22055/jacm.2020.31776.1920
  31. Jassim H.K., Khafif S.A. SVIM for solving Burger’s and coupled Burger’s equations of fractional order. Prog. Fract. Differ. Appl. 2021, 7 (1), 7. doi:10.18576/pfda/070107
  32. Jassim H.K., Mohammed M.G. Natural homotopy perturbation method for solving nonlinear fractional gas dynamics equations. Int. J. Nonlinear Anal. Appl. 2021, 12 (1), 812–820. doi:10.22075/ijnaa.2021.4936
  33. Jassim H.K., Shareef M.A. On approximate solutions for fractional system of differential equations with Caputo-Fabrizio fractional operator. J. Math. Comput. Sci. 2021, 23 (1) 58–66. doi:10.22436/jmcs.023.01.06
  34. Jassim H.K., Shahab W.A. Fractional variational iteration method to solve one dimensional second order hyperbolic telegraph equations. J. Phys.: Conf. Ser. 2018, 1032, 012015. doi:10.1088/1742-6596/1032/1/012015
  35. Jassim H.K., Ünlü C., Moshokoa S.P., Khalique C.M. Local fractional Laplace variational iteration method for solving diffusion and wave equations on Cantor sets within local fractional operators. Math. Probl. Eng. 2015, 2015, 309870. doi:10.1155/2015/309870
  36. Jassim H.K., Vahidi J., Ariyan V.M. Solving Laplace equation within local fractional operators by using local fractional differential transform and Laplace variational iteration methods. Nonlinear Dyn. Syst. Theory 2020, 20 (4), 388–396.
  37. Li Y., Wang L.F., Yuan S.J. Reconstructive schemes for variational iteration method within Yang-Laplace transform with application to fractal heat conduction problem. Therm. Sci. 2013, 17 (3), 715–721. doi:10.2298/tsci120826075l
  38. Mohsin N.H., Jassim H.K., Azeez A.D. A new analytical method for solving nonlinear Burger’s and coupled Burger’s equations. Mater. Today: Proc. 2021. doi:10.1016/j.matpr.2021.07.194 (in press)
  39. Podlubny I. Fractional Differential Equations. Academic Press, San Diego, CA, 1999.
  40. Shakeel M., Hussain I., Ahmad H., Ahmad I., Thounthong P., Zhan Y.-F. Meshless technique for the solution of time-fractional partial differential equations having real-world applications. J. Funct. Spaces 2020, 2020, 8898309. doi:10.1155/2020/8898309.
  41. Singh J., Jassim H.K., Kumar D. An efficient computational technique for local fractional Fokker-Planck equation. Phys. A: Stat. Mech. Appl. 2020, 555, 124525. doi;10.1016/j.physa.2020.124525
  42. Su W.H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation and dissipative wave equation in fractal strings within the local fractional variational iteration method. Fixed Point Theory Appl. 2013, 2013, 89. doi:10.1186/1687-1812-2013-89
  43. Wang K., Liu S. A new Sumudu transform iterative method for time-fractional Cauchy reaction-diffusion equation. Springer Plus 2016, 5, 865. doi:10.1186/s40064-016-2426-8
  44. Xu S., Ling X., Zhao Y., Jassim H.K. A novel schedule for solving the two-dimensional diffusion in fractal heat transfer. Therm. Sci. 2015, 19 (1), 99–103. doi:10.2298/TSCI15S1S99X
  45. Yang X.J. Local Fractional Functional Analysis and Its Applications. Asian Academic, Hong Kong, China, 2011.
  46. Yang X.J., Machad J.A., Srivastava H.M. A new numerical technique for solving the local fractional diffusion equation: two-dimensional extended differential transform approach. Appl. Math. Comput. 2016, 274, 143–151. doi:10.1016/j.amc.2015.10.072
  47. Yan S.P., Jafari H., Jassim H.K. Local fractional Adomian decomposition and function decomposition methods for solving Laplace equation within local fractional operators. Adv. Math. Phys. 2014, 2014, 161580. doi:10.1155/2014/161580