References
- Ahmad I., Ahmad H., Abouelregal A.E., Thounthong P., Abdel-Atay M.
Numerical study of integer-order hyperbolic telegraph model arising
in physical and related sciences. Eur. Phys. J. Plus 2020,
135, 759. doi:10.1140/epjp/s13360-020-00784-z
- Ahmad I., Ahmad H., Inc M., Yao S.W., Almohsen B. Application of
local meshless method for the solution of two term time fractional-order
multi-dimensional PDE arising in heat and mass transfer. Therm.
Sci. 2020, 24 (1), 95–105.
doi:10.2298/TSCI20S1095A.
- Ahmad I., Ahmad H., Thounthong P., Chu Y.M., Cesarano C. Solution of
multi-term time-fractional PDE models arising in mathematical biology
and physics by local meshless method. Symmetry 2020, 12
(7), 1195. doi:10.3390/sym12071195
- Ahmad H., Akgül A., Khan T.A., Stanimirović P.S., Chu Y.-M. New
perspective on the conventional solutions of the nonlinear
time-fractional PDEs. Complexity 2020, 2020,
8829017. doi:10.1155/2020/8829017.
- Ahmad H., Khan T.A., Ahmad I., Chu Y.-M. A new analyzing
technique for nonlinear time fractional Cauchy reaction-diffusion model
equations. Results Phys. 2020, 19 103462.
doi:10.1016/j.rinp.2020.103462.
- Ahmad H., Khan T.A., Stanimirović P.S., Ahmad I. Modified
variational iteration technique for the numerical solution of fifth
order KdV type equations. Appl. Comput. Mech. 2020,
6, 1220–1227. doi:10.22055/jacm.2020.33305.2197
- Ahmad H., Khan T.A., Stanimirović P.S., Chu Y.-M., Ahmad I.
Modified variational iteration algorithm-II: convergence and
applications to diffusion models. Complexity 2020,
2020, 8841718. doi:10.1155/2020/8841718
- Ahmad H., Seadawy A.R., Khan T.A., Thounthong P. Analytic
approximate solutions for some nonlinear parabolic dynamical wave
equations. J. Taibah Univ. Sci. 2020, 14 (1),
346–358. doi:10.1080/16583655.2020.1741943
- Alzaki L.K., Jassim H.K. The approximate analytical solutions of
nonlinear fractional ordinary differential equations. Int. J.
Nonlinear Anal. Appl. 2021, 12 (2), 527–535.
doi:10.22075/ijnaa.2021.5094
- Amara A., Etemad S., Rezapour S. Topological degree theory and
Caputo-Hadamard fractional boundary value problems. Adv. Differ.
Equ. 2020, 2020, 369.
doi:10.1186/s13662-020-02833-4
- Baleanu D., Etemad S., Rezapour S. A hybrid Caputo fractional
modeling for thermostat with hybrid boundary value conditions.
Bound. Value Probl. 2020, 2020, 64.
10.1186/s13661-020-01361-0
- Baleanu D., Jajarm A., Mohammadi H., Rezapour S. A new study on
the mathematical modeling of human liver with Caputo-Fabrizio fractional
derivative. Chaos Solitons Fractals 2020, 134
109705. doi:10.1016/j.chaos.2020.109705
- Baleanu D., Jassim H.K., Al Qurashi M. Solving Helmholtz equation
with local fractional derivative operators. Fractal Fract. 2019,
3 (3), 43. doi:10.3390/fractalfract3030043
- Baleanu D., Jassim H.K. A modification fractional homotopy
perturbation method for solving Helmholtz and coupled Helmholtz
equations on Cantor sets. Fractal Fract. 2019, 3
(2), 30. doi:10.3390/fractalfract3020030
- Baleanu D., Jassim H.K. Approximate solutions of the damped wave
equation and dissipative wave equation in fractal strings. Fractal
Fract. 2019, 3 (2), 26.
doi:10.3390/fractalfract3020026
- Baleanu D., Jassim H.K. Approximate analytical solutions of
Goursat problem within local fractional operators. J. Nonlinear
Sci. Appl. 2016, 9 (6), 4829–4837.
doi;10.22436/jnsa.009.06.118
- Baleanu D., Jassim H.K. Exact solution of two-dimensional
fractional partial differential equations. Fractal Fract. 2020,
4 (2), 21. doi:10.3390/fractalfract4020021
- Baleanu D., Jassim H.K., Khan H. A modification fractional
variational iteration method for solving nonlinear gas dynamic and
coupled KdV equations involving local fractional operators. Therm.
Sci. 2018, 22 (1), 165–175.
doi:10.2298/TSCI170804283B
- Baleanu D., Mousalou A., Rezapour S. On the existence of
solutions for some infinite coefficient-symmetric Caputo-Fabrizio
fractional integro-differential equations. Bound. Value Probl.
2017, 2017, 145. doi:10.1186/s13661-017-0867-9
- Eaued H.A., Jassim H.K., Mohammed M.G. A novel method for the
analytical solution of partial differential equations arising in
mathematical physics. IOP Conf. Ser.: Mater. Sci. Eng. 2020,
928, 042037. doi:10.1088/1757-899X/928/4/042037
- Fan Z.P., Jassim H.K., Rainna R.K., Yang X.J. Adomian
decomposition method for three-dimensional diffusion model in fractal
heat transfer involving local fractional derivatives. Therm. Sci.
2015, 19 (1), 137–141. doi:10.2298/TSCI15S1S37F
- Inc M., Khan M.N., Ahmad I., Yao S.W., Ahmad H., Thounthong P.
Analysing time-fractional exotic options via efficient local
meshless method. Results Phys. 2020, 19, 103385.
doi:10.1016/j.rinp.2020.103385.
- Jafari H., Jassim H.K. Local fractional variational iteration
method for nonlinear partial differential equations within local
fractional operators. Appl. Appl. Math. 2015, 10
(2), 1055–1065.
- Jafari H., Jassim H.K., Moshokoa S.P., Ariyan V.M., Tchier F.
Reduced differential transform method for partial differential
equations within local fractional derivative operators. Adv. Mech.
Eng. 2016, 8 (4) 1–6. doi:10.1177/1687814016633013
- Jafari H., Jassim H.K., Tchier F., Baleanu D. On the approximate
solutions of local fractional differential equations with local
fractional operator. Entropy 2016, 18 (4), 150.
doi:10.3390/e18040150
- Jafari H., Jassim H.K., Vahidi J. Reduced differential transform
and variational iteration methods for 3D diffusion model in fractal heat
transfer within local fractional operators. Therm. Sci. 2018,
22 (1), 301–307. doi:10.2298/TSCI170707033J
- Jassim H.K. Analytical approximate solutions for local fractional
wave equations. Math. Methods Appl. Sci. 2020, 43
(2), 939–947. doi:10.1002/mma.5975
- Jassim H.K. A new approach to find approximate solutions of
Burger’s and coupled Burger’s equations of fractional order. TWMS
J. App. and Eng. Math. 2021, 11 (2), 415–423.
- Jassim H.K., Baleanu D. A novel approach for Korteweg-de Vries
equation of fractional order. J. Appl. Comput. Mech. 2019,
5 (2), 192–198. doi:10.22055/jacm.2018.25732.1292
- Jassim H.K., Kadhim H.A. Fractional Sumudu decomposition method
for solving PDEs of fractional order. J. Appl. Comput. Mech. 2021,
7 (1), 302–311. doi:10.22055/jacm.2020.31776.1920
- Jassim H.K., Khafif S.A. SVIM for solving Burger’s and coupled
Burger’s equations of fractional order. Prog. Fract. Differ. Appl.
2021, 7 (1), 7. doi:10.18576/pfda/070107
- Jassim H.K., Mohammed M.G. Natural homotopy perturbation method
for solving nonlinear fractional gas dynamics equations. Int. J.
Nonlinear Anal. Appl. 2021, 12 (1), 812–820.
doi:10.22075/ijnaa.2021.4936
- Jassim H.K., Shareef M.A. On approximate solutions for fractional
system of differential equations with Caputo-Fabrizio fractional
operator. J. Math. Comput. Sci. 2021, 23 (1)
58–66. doi:10.22436/jmcs.023.01.06
- Jassim H.K., Shahab W.A. Fractional variational iteration method
to solve one dimensional second order hyperbolic telegraph
equations. J. Phys.: Conf. Ser. 2018, 1032,
012015. doi:10.1088/1742-6596/1032/1/012015
- Jassim H.K., Ünlü C., Moshokoa S.P., Khalique C.M. Local
fractional Laplace variational iteration method for solving diffusion
and wave equations on Cantor sets within local fractional
operators. Math. Probl. Eng. 2015, 2015, 309870.
doi:10.1155/2015/309870
- Jassim H.K., Vahidi J., Ariyan V.M. Solving Laplace equation
within local fractional operators by using local fractional differential
transform and Laplace variational iteration methods. Nonlinear Dyn.
Syst. Theory 2020, 20 (4), 388–396.
- Li Y., Wang L.F., Yuan S.J. Reconstructive schemes for
variational iteration method within Yang-Laplace transform with
application to fractal heat conduction problem. Therm. Sci. 2013,
17 (3), 715–721. doi:10.2298/tsci120826075l
- Mohsin N.H., Jassim H.K., Azeez A.D. A new analytical method for
solving nonlinear Burger’s and coupled Burger’s equations. Mater.
Today: Proc. 2021. doi:10.1016/j.matpr.2021.07.194 (in press)
- Podlubny I. Fractional Differential Equations. Academic Press, San
Diego, CA, 1999.
- Shakeel M., Hussain I., Ahmad H., Ahmad I., Thounthong P., Zhan Y.-F.
Meshless technique for the solution of time-fractional partial
differential equations having real-world applications. J. Funct.
Spaces 2020, 2020, 8898309.
doi:10.1155/2020/8898309.
- Singh J., Jassim H.K., Kumar D. An efficient computational
technique for local fractional Fokker-Planck equation. Phys. A:
Stat. Mech. Appl. 2020, 555, 124525.
doi;10.1016/j.physa.2020.124525
- Su W.H., Baleanu D., Yang X.-J., Jafari H. Damped wave equation
and dissipative wave equation in fractal strings within the local
fractional variational iteration method. Fixed Point Theory Appl.
2013, 2013, 89. doi:10.1186/1687-1812-2013-89
- Wang K., Liu S. A new Sumudu transform iterative method for
time-fractional Cauchy reaction-diffusion equation. Springer Plus
2016, 5, 865. doi:10.1186/s40064-016-2426-8
- Xu S., Ling X., Zhao Y., Jassim H.K. A novel schedule for solving
the two-dimensional diffusion in fractal heat transfer. Therm. Sci.
2015, 19 (1), 99–103. doi:10.2298/TSCI15S1S99X
- Yang X.J. Local Fractional Functional Analysis and Its Applications.
Asian Academic, Hong Kong, China, 2011.
- Yang X.J., Machad J.A., Srivastava H.M. A new numerical technique
for solving the local fractional diffusion equation: two-dimensional
extended differential transform approach. Appl. Math. Comput. 2016,
274, 143–151. doi:10.1016/j.amc.2015.10.072
- Yan S.P., Jafari H., Jassim H.K. Local fractional Adomian
decomposition and function decomposition methods for solving Laplace
equation within local fractional operators. Adv. Math. Phys. 2014,
2014, 161580. doi:10.1155/2014/161580