References
- Ali M.A., Nápoles V.J.E., Kashuri A., Zhang Z. Fractional non
conformable Hermite-Hadamard inequalities for generalized \(\phi\)-convex functions. Fasc. Math.
2020, 64, 5–16. doi:10.21008/j.0044-4413.2020.0007
- Atangana A. Derivative with a New Parameter: Theory, Methods and
Applications. Academic Press, 2015.
- Atangana A. Extension of rate of change concept: from local to
nonlocal operators with applications. Results in Physics 2020,
19, 103515. doi:10.1016/j.rinp.2020.103515
- Baleanu D. Comments on: “The failure of certain fractional
calculus operators in two physical models” by M. Ortigueira,
V. Martynyuk, M. Fedula and J.A.T. Machado. Fract. Calc. Appl.
Anal. 2020, 23 (1), 292–297.
doi:10.1515/fca-2020-0012
- Baleanu D., Fernandez A. On Fractional Operators and Their
Classifications. Mathematics 2019, 7 (9), 830.
doi:10.3390/math7090830
- Bermudo S., Kórus P., Nápoles V.J.E. On \(q\)-Hermite–Hadamard inequalities for
general convex functions. Acta Math. Hungar. 2020,
162, 364–374. doi:10.1007/s10474-020-01025-6
- Bessenyei M., Páles Z. On generalized higher-order convexity and
Hermite–Hadamard-type inequalities. Acta Sci. Math. (Szeged) 2004,
70 (1–2), 13–24.
- Breckner W.W. Stetigkeitsaussagen für eine Klasse
verallgemeinerter konvexer funktionen in topologischen linearen
Räumen. Publ. Inst. Math. (Beograd) (N.S.) 1978,
23 (37), 13–20.
- Díaz R., Pariguan E. On hypergeometric functions and Pochhammer
\(k\)-symbol. Divulg. Mat. 2007,
15 (2), 179–192.
- Dragomir S.S., Agarwal R.P. Two inequalities for differentiable
mappings and applications to special means of real numbers and
trapezoidal formula. Appl. Math. Lett. 1998, 11
(5), 91–95. doi:10.1016/S0893-9659(98)00086-X
- Dragomir S.S., Fitzpatrik S. The Hadamard inequalities for \(s\)-convex functions in the second
sense. Demonstr. Math. 1999, 32 (4), 687–696.
doi:10.1515/dema-1999-0403
- Dragomir S.S., Pearce C.E.M. Selected Topics on Hermite-Hadamard
Inequalities and Applications. Science Direct Working Paper No
S1574-0358(04)70845-X.
- Dragomir S.S., Pecaric J., Persson L.E. Some inequalities of
Hadamard type. Soochow J. Math. 1995, 21 (3),
335–341.
- Fleitas A., Nápoles V.J.E., Rodríguez J.M., Sigarreta J.M. On the
generalized fractional derivative. Revista de la UMA, to
appear.
- Gorenflo R., Mainardi F. Fractional Calculus: Integral and
Differential Equations of Fractional Order. Springer Verlag, Wien and
New York, 1997.
- Guzmán P.M., Lugo L.M., Nápoles V.J.E., Vivas M. On a New
Generalized Integral Operator and Certain Operating Properties.
Axioms 2020, 9 (2), 69. doi:10.3390/axioms9020069
- Guzmán P.M., Nápoles V.J.E., Gasimov Y. Integral inequalities
within the framework of generalized fractional integrals. Fract.
Differ. Calc., to appear.
- Hernández Hernández J.E. On Some New Integral Inequalities
Related With The Hermite-Hadamard Inequality via h-Convex
Functions. MAYFEB J. Math. 2017, 4, 1–12.
- Hudzik H., Maligranda L. Some remarks on \(s\)-convex functions. Aequationes
Math. 1994, 48, 100–111. doi:10.1007/BF01837981
- Khalil R., Al Horani M., Yousef A., Sababheh M. A new definition
of fractional derivative. J. Comput. Appl. Math. 2014,
264, 65–70. doi:10.1016/j.cam.2014.01.002
- Klaričić Bakula M., Neuman E., Pečarić J., Šimić V.
Hermite–Hadamard’s inequalities for multivariate \(g\)-convex functions. Math. Inequal.
Appl. 2005, 8 (2), 305–316. doi:10.7153/mia-08-28
- Kórus P., Lugo L.M., Nápoles V.J.E. Integral inequalities in a
generalized context. Studia Sci. Math. Hungar. 2020,
57 (3), 312–320. doi:10.1556/012.2020.57.3.1464
- Matloka M. On some integral inequalities for \((h, m)\)-convex functions. Math. Econ.
2013, 9 (16), 55–70. doi:10.15611/me.2013.9.05
- Mihesan V.G. A generalization of the convexity. Seminar on
Functional Equations Approx. and Convex., Cluj-Napoca, Romania,
1993.
- Moslehian M.S. Matrix Hermite-Hadamard type inequalities.
Houston J. Math. 2013, 39 (1), 177–189.
- Muddassar M., Bhatti M.I., Irshad W. Some new \(s\)-Hermite Hadamard type ineqalities for
differentiable functions and their applications. Proc. Pak. Acad.
Sci. A 2012, 49 (1), 9–17.
- Muddassar M., Bhatti M.I., Irshad W. Generalisation of integral
inequalities of Hermite-Hadamard type through convexity. Bull.
Aust. Math. Soc. 2013, 88 (2), 320–330.
doi:10.1017/S0004972712000937
- Nápoles Valdés J.E. Generalized fractional Hilfer integral and
derivative. Contrib. Math. 2020, 2, 55–60.
doi:10.47443/cm.2020.0036
- Nápoles J.E., Guzmán P.M., Lugo L.M., Kashuri A. The local
generalized derivative and Mittag Leffler function. Sigma J. Eng.
& Nat. Sci. 2020, 38 (2), 1007–1017.
- Nápoles Valdés J.E., Rabossi F., Samaniego A.D. Convex functions:
Ariadne's thread or Charlotte's Spiderweb? Advanced Mathematical
Models & Applications 2020, 5 (2), 176–191.
- Nápoles Valdés J.E., Rodrı́guez J.M., Sigarreta J.M. On
Hermite–Hadamard type inequalities for non-conformable integral
operators. Symmetry 2019, 11 (9), 1108.
doi:10.3390/sym11091108
- Özdemir M.E., Akdemir A.O., Set E. On \((h-m)\)-convexity and Hadamard-type
inequalities. Transylv. J. Math. Mech. 2016, 8
(1), 51–58. doi:10.48550/arXiv.1103.6163
- Pearce C.E.M., Pečarić J. Inequalities for differentiable
mappings with application to special means and quadrature formulae.
Appl. Math. Lett. 2000, 13 (2), 51–55.
doi:10.1016/S0893-9659(99)00164-0
- Qi F., Guo B.-N. Integral representations and complete
monotonicity of remainders of the Binet and Stirling formulas for the
gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math.
RACSAM 2017, 111 (2), 425–434.
doi:10.13140/2.1.2733.3928
- Park J. Generalization of Ostrowski-type inequalities for
differentiable real \((s, m)\)-convex
mappings. Far East J. Math. Sci. 2011, 49 (2),
157–171.
- Rainville E.D. Special Functions. The Macmillan Co., New York,
1960.
- Sarikaya M.Z., Saglam A., Yildirim H. On Some
Hadamard-type-Inequalities for \(h\)-convex Functions. J. Math.
Inequal. 2008, 2 (3), 335–341.
doi:10.7153/jmi-02-30
- Toader G. Some generalizations of the convexity. Proceedings of the
Colloquium on Approximation and Optimization, University Cluj-Napoca,
Cluj-Napoca, 1985, 329–338.
- Umarov S., Steinberg S. Variable order differential equations
with piecewise constant order-function and diffusion with changing
modes. Z. Anal. Anwend. 2009, 28 (4), 431–450.
doi:10.4171/ZAA/1392
- Vivas-Cortez M., Kórus P., Nápoles Valdés J.E. Some generalized
Hermite-Hadamard-Fejér inequality for convex functions. Adv.
Difference Equ. 2021, 2021, 199.
doi:10.1186/s13662-021-03351-7
- Xi B.-Y., Gao D.-D., Qi F. Integral inequalities of
Hermite-Hadamard type for \((\alpha,s)\)-convex and \((\alpha,s,m)\)-convex functions. Ital.
J. Pure Appl. Math. 2020, 44, 499–510.
- Xi B.-Y., Qi F. Inequalities of Hermite-Hadamard type for
extended \(s\)-convex functions and
applications to means. J. Nonlinear Convex Anal. 2015,
16 (5), 873–890.
- Yang Z.-H., Tian J.-F. Monotonicity and inequalities for the
gamma function. J. Inequal. Appl. 2017, 2017, 317.
doi:10.1186/s13660-017-1591-9
- Yang Z.-H., Tian J.-F. Monotonicity and sharp inequalities
related to gamma function. J. Math. Inequal. 2018,
12 (1), 1–22. doi:10.7153/jmi-2018-12-01
- Zhao D., Luo M. General conformable fractional derivative and its
physical interpretation. Calcolo 2017, 54,
903–917. doi:10.1007/s10092-017-0213-8