References

  1. Ali M.A., Nápoles V.J.E., Kashuri A., Zhang Z. Fractional non conformable Hermite-Hadamard inequalities for generalized \(\phi\)-convex functions. Fasc. Math. 2020, 64, 5–16. doi:10.21008/j.0044-4413.2020.0007
  2. Atangana A. Derivative with a New Parameter: Theory, Methods and Applications. Academic Press, 2015.
  3. Atangana A. Extension of rate of change concept: from local to nonlocal operators with applications. Results in Physics 2020, 19, 103515. doi:10.1016/j.rinp.2020.103515
  4. Baleanu D. Comments on: “The failure of certain fractional calculus operators in two physical models” by M. Ortigueira, V. Martynyuk, M. Fedula and J.A.T. Machado. Fract. Calc. Appl. Anal. 2020, 23 (1), 292–297. doi:10.1515/fca-2020-0012
  5. Baleanu D., Fernandez A. On Fractional Operators and Their Classifications. Mathematics 2019, 7 (9), 830. doi:10.3390/math7090830
  6. Bermudo S., Kórus P., Nápoles V.J.E. On \(q\)-Hermite–Hadamard inequalities for general convex functions. Acta Math. Hungar. 2020, 162, 364–374. doi:10.1007/s10474-020-01025-6
  7. Bessenyei M., Páles Z. On generalized higher-order convexity and Hermite–Hadamard-type inequalities. Acta Sci. Math. (Szeged) 2004, 70 (1–2), 13–24.
  8. Breckner W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Räumen. Publ. Inst. Math. (Beograd) (N.S.) 1978, 23 (37), 13–20.
  9. Díaz R., Pariguan E. On hypergeometric functions and Pochhammer \(k\)-symbol. Divulg. Mat. 2007, 15 (2), 179–192.
  10. Dragomir S.S., Agarwal R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula. Appl. Math. Lett. 1998, 11 (5), 91–95. doi:10.1016/S0893-9659(98)00086-X
  11. Dragomir S.S., Fitzpatrik S. The Hadamard inequalities for \(s\)-convex functions in the second sense. Demonstr. Math. 1999, 32 (4), 687–696. doi:10.1515/dema-1999-0403
  12. Dragomir S.S., Pearce C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications. Science Direct Working Paper No S1574-0358(04)70845-X.
  13. Dragomir S.S., Pecaric J., Persson L.E. Some inequalities of Hadamard type. Soochow J. Math. 1995, 21 (3), 335–341.
  14. Fleitas A., Nápoles V.J.E., Rodríguez J.M., Sigarreta J.M. On the generalized fractional derivative. Revista de la UMA, to appear.
  15. Gorenflo R., Mainardi F. Fractional Calculus: Integral and Differential Equations of Fractional Order. Springer Verlag, Wien and New York, 1997.
  16. Guzmán P.M., Lugo L.M., Nápoles V.J.E., Vivas M. On a New Generalized Integral Operator and Certain Operating Properties. Axioms 2020, 9 (2), 69. doi:10.3390/axioms9020069
  17. Guzmán P.M., Nápoles V.J.E., Gasimov Y. Integral inequalities within the framework of generalized fractional integrals. Fract. Differ. Calc., to appear.
  18. Hernández Hernández J.E. On Some New Integral Inequalities Related With The Hermite-Hadamard Inequality via h-Convex Functions. MAYFEB J. Math. 2017, 4, 1–12.
  19. Hudzik H., Maligranda L. Some remarks on \(s\)-convex functions. Aequationes Math. 1994, 48, 100–111. doi:10.1007/BF01837981
  20. Khalil R., Al Horani M., Yousef A., Sababheh M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. doi:10.1016/j.cam.2014.01.002
  21. Klaričić Bakula M., Neuman E., Pečarić J., Šimić V. Hermite–Hadamard’s inequalities for multivariate \(g\)-convex functions. Math. Inequal. Appl. 2005, 8 (2), 305–316. doi:10.7153/mia-08-28
  22. Kórus P., Lugo L.M., Nápoles V.J.E. Integral inequalities in a generalized context. Studia Sci. Math. Hungar. 2020, 57 (3), 312–320. doi:10.1556/012.2020.57.3.1464
  23. Matloka M. On some integral inequalities for \((h, m)\)-convex functions. Math. Econ. 2013, 9 (16), 55–70. doi:10.15611/me.2013.9.05
  24. Mihesan V.G. A generalization of the convexity. Seminar on Functional Equations Approx. and Convex., Cluj-Napoca, Romania, 1993.
  25. Moslehian M.S. Matrix Hermite-Hadamard type inequalities. Houston J. Math. 2013, 39 (1), 177–189.
  26. Muddassar M., Bhatti M.I., Irshad W. Some new \(s\)-Hermite Hadamard type ineqalities for differentiable functions and their applications. Proc. Pak. Acad. Sci. A 2012, 49 (1), 9–17.
  27. Muddassar M., Bhatti M.I., Irshad W. Generalisation of integral inequalities of Hermite-Hadamard type through convexity. Bull. Aust. Math. Soc. 2013, 88 (2), 320–330. doi:10.1017/S0004972712000937
  28. Nápoles Valdés J.E. Generalized fractional Hilfer integral and derivative. Contrib. Math. 2020, 2, 55–60. doi:10.47443/cm.2020.0036
  29. Nápoles J.E., Guzmán P.M., Lugo L.M., Kashuri A. The local generalized derivative and Mittag Leffler function. Sigma J. Eng. & Nat. Sci. 2020, 38 (2), 1007–1017.
  30. Nápoles Valdés J.E., Rabossi F., Samaniego A.D. Convex functions: Ariadne's thread or Charlotte's Spiderweb? Advanced Mathematical Models & Applications 2020, 5 (2), 176–191.
  31. Nápoles Valdés J.E., Rodrı́guez J.M., Sigarreta J.M. On Hermite–Hadamard type inequalities for non-conformable integral operators. Symmetry 2019, 11 (9), 1108. doi:10.3390/sym11091108
  32. Özdemir M.E., Akdemir A.O., Set E. On \((h-m)\)-convexity and Hadamard-type inequalities. Transylv. J. Math. Mech. 2016, 8 (1), 51–58. doi:10.48550/arXiv.1103.6163
  33. Pearce C.E.M., Pečarić J. Inequalities for differentiable mappings with application to special means and quadrature formulae. Appl. Math. Lett. 2000, 13 (2), 51–55. doi:10.1016/S0893-9659(99)00164-0
  34. Qi F., Guo B.-N. Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 2017, 111 (2), 425–434. doi:10.13140/2.1.2733.3928
  35. Park J. Generalization of Ostrowski-type inequalities for differentiable real \((s, m)\)-convex mappings. Far East J. Math. Sci. 2011, 49 (2), 157–171.
  36. Rainville E.D. Special Functions. The Macmillan Co., New York, 1960.
  37. Sarikaya M.Z., Saglam A., Yildirim H. On Some Hadamard-type-Inequalities for \(h\)-convex Functions. J. Math. Inequal. 2008, 2 (3), 335–341. doi:10.7153/jmi-02-30
  38. Toader G. Some generalizations of the convexity. Proceedings of the Colloquium on Approximation and Optimization, University Cluj-Napoca, Cluj-Napoca, 1985, 329–338.
  39. Umarov S., Steinberg S. Variable order differential equations with piecewise constant order-function and diffusion with changing modes. Z. Anal. Anwend. 2009, 28 (4), 431–450. doi:10.4171/ZAA/1392
  40. Vivas-Cortez M., Kórus P., Nápoles Valdés J.E. Some generalized Hermite-Hadamard-Fejér inequality for convex functions. Adv. Difference Equ. 2021, 2021, 199. doi:10.1186/s13662-021-03351-7
  41. Xi B.-Y., Gao D.-D., Qi F. Integral inequalities of Hermite-Hadamard type for \((\alpha,s)\)-convex and \((\alpha,s,m)\)-convex functions. Ital. J. Pure Appl. Math. 2020, 44, 499–510.
  42. Xi B.-Y., Qi F. Inequalities of Hermite-Hadamard type for extended \(s\)-convex functions and applications to means. J. Nonlinear Convex Anal. 2015, 16 (5), 873–890.
  43. Yang Z.-H., Tian J.-F. Monotonicity and inequalities for the gamma function. J. Inequal. Appl. 2017, 2017, 317. doi:10.1186/s13660-017-1591-9
  44. Yang Z.-H., Tian J.-F. Monotonicity and sharp inequalities related to gamma function. J. Math. Inequal. 2018, 12 (1), 1–22. doi:10.7153/jmi-2018-12-01
  45. Zhao D., Luo M. General conformable fractional derivative and its physical interpretation. Calcolo 2017, 54, 903–917. doi:10.1007/s10092-017-0213-8