References

  1. Albert A.A. Non-associative algebras. I, II. Ann. of Math. (2) 1942, 43 (4), 685–723.
  2. Alsaody S., Gille P. Isotopes of octonion algebras, \(G_2\)-torsors and triality. Adv. Math. 2019, 343, 864–909. doi:10.1016/j.aim.2018.12.003
  3. Bai C., Bai R., Guo L., Wu Y. Transposed Poisson algebras, Novikov-Poisson algebras and \(3\)-Lie algebras. arXiv:2005.01110 [math.QA]. doi:10.48550/arXiv.2005.01110
  4. Boers A.H. The nucleus in a non-associative ring. Indag. Math. (N.S.) 1971, 33, 464–470.
  5. Burde D., Ender C. Commutative post-Lie algebra structures on nilpotent Lie algebras and Poisson algebras. Linear Algebra Appl. 2020, 584, 107–126. doi:10.48550/arXiv.1903.00291
  6. Dzhumadil'daev A. Associative-admissible algebras. In: list of titles and abstracts of the Intern. Workshop on Non-Associative Algebras, Porto, Portugal, April 29–May 3, 2019, p. 6. Available online: https://cmup.fc.up.pt/nonassociativePorto2019/wp-content/uploads/2019/04/abstracts.pdf#page=6.
  7. Elduque A., Montaner F. On mutations of associative algebras. J. Korean Math. Soc. 1991, 28 (1), 143–156.
  8. Ferreira B., Kaygorodov I., Lopatkin V. \(\frac{1}{2}\)-derivations of Lie algebras and transposed Poisson algebras. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2021, 115 (142), 1–19. doi:10.1007/s13398-021-01088-2
  9. Glizburg V., Pchelintsev S. Isotopes of simple algebras of arbitrary dimension. Asian-Eur. J. Math. 2020, 13 (6), 1–19. doi:10.1142/S1793557120501089
  10. Gorshkov I., Kaygorodov I., Popov Yu. Degenerations of Jordan algebras and ”Marginal” algebras. Algebra Colloq. 2021, 28 (2), 281–294. doi:10.1142/S1005386721000225
  11. Ismailov N., Kaygorodov I., Volkov Yu. Degenerations of Leibniz and anticommutative algebras. Canad. Math. Bull. 2019, 62 (3), 539–549. doi:10.4153/S0008439519000018
  12. Kantor I.L. Certain generalizations of Jordan algebras. Trudy Sem. Vektor. Tenzor. Anal. 1972, 16, 407–499. (in Russian)
  13. Kantor I.L. The universal conservative algebra. Sib. Math. J. 1990, 31 (3), 388–395. doi:10.1007/BF00970345
  14. Kaygorodov I. On the Kantor product. J. Algebra Appl. 2017, 16 (9), 1750167. doi:10.1142/S0219498817501675
  15. Kaygorodov I., Lopatin A., Popov Yu. Conservative algebras of \(2\)-dimensional algebras. Linear Algebra Appl. 2015, 486, 255–274. doi:10.1016/j.laa.2015.08.011
  16. Kaygorodov I., Zusmanovich P. On anticommutative algebras for which \([R_a, R_b]\) is a derivation. J. Geom. Phys. 2021, 163, 104113. doi:10.1016/j.geomphys.2021.104113
  17. Kupershmidt B. Phase Spaces of Algebras. Mathematics (UTSI). Publications and Other Works, 2010.
  18. Kuzmin E. Binary Lie algebras of small dimensions. Algebra Logic 1998, 37 (3), 181–186.
  19. Malcev A. On a representation of nonassociative rings. Uspekhi Mat. Nauk 1952, 7 (1), 181–185. (in Russian)
  20. Pchelintsev S. Isotopes of alternative algebras in characteristic not equal to \(3\). Izv. Math. 2020, 84 (5), 1002–1015.
  21. Rais Khan M. On quasi-commutative Jordan algebras. Math. Japon. 1980, 24 (5), 479–487.
  22. Remm E. Weakly associative algebras, Poisson algebras and deformation quantization. Comm. Algebra 2021, 49 (9), 3881–3904. doi:10.1080/00927872.2021.1909058
  23. Saha R., Towers D. On certain classes of algebras in which centralizers are ideals. J. Lie Theory 2021, 31 (4), 991–1002. doi:10.48550/arXiv.2004.12110
  24. Zakharov A. Novikov-Poisson algebras of low dimension. Sib. Èlektron. Mat. Izv. 2015, 12, 381–393. (in Russian)
  25. Zusmanovich P. Special and exceptional mock-Lie algebras. Linear Algebra Appl. 2017, 518, 79–96. doi:10.1016/j.laa.2016.12.029