References

  1. Acar T. \((p,q)\)-Generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 2016, 39 (16), 2685–2695. doi:10.1002/mma.3721
  2. Acar T., Aral A., Mohiuddine S.A. On Kantorovich modification of \((p, q)\)-Bernstein operators. Iran. J. Sci. Technol. Trans. A Sci. 2017, 42 (3), 1459–1464. doi:10.1007/s40995-017-0154-8
  3. Acar T., Aral A., Mursaleen M. Approximation by Baskakov-Durrmeyer operators based on \((p, q)\)-integers. Math. Slovaca 2018, 68 (4), 897–906. doi:10.1515/ms-2017-0153
  4. Acar T., Agrawal P.N., Kumar A.S. On a Modification of \((p,q)\)-Szász-Mirakyan Operators. Complex Anal. Oper. Theory 2018, 12, 155–167. doi:10.1007/s11785-016-0613-9
  5. Bernstein S.N. Démonstration du theorème de Weierstrass fondeé sur le calcul des probabilités. Commun. Kharkov Math. Soc. 1912, 13 (1), 1–2.
  6. Belen C., Mohiuddine S.A. Generalized weighted statistical convergence and application. Appl. Math. Comput. 2013, 219 (18), 9821–9826.
  7. Ilarslan H.G.I., Acar T. Approximation by bivariate \((p,q)\)-Baskakov-Kantorovich operators. Georgian Math. J. 2016, 25 (3), 397–407. doi:10.1515/gmj-2016-0057.
  8. Cai Q.-B., Zhoub G. On \((p, q)\)-analogue of Kantorovich type Bernstein-Stancu-Schurer operators. Appl. Math. Comput. 2016, 276 (5), 12–20. doi:10.1016/j.amc.2015.12.006
  9. Cai Q.-B., Cheng W.-T. Convergence of \(\lambda\)-Bernstein operators based on \((p, q)\)-integers. J. Inequal. Appl. 2020, 2020 (35). doi:10.1186/s13660-020-2309-y
  10. Edely H.H. Osama, Mohiuddine S.A., Noman K.A. Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 2010, 23 (11), 1382–1387. doi:10.1016/j.aml.2010.07.004
  11. Gadjiev A.D., Orhan C. Some approximation theorems via statistical convergence. Rocky Mountain J. Math. 2002, 32 (1), 129–138. doi:10.1216/rmjm/1030539612
  12. Lupaş A. A \(q\)-analogue of the Bernstein operator. Seminar on Numerical and Statistical Calculus. University of Cluj-Napoca. 1987, 9, 85–92.
  13. Dalmanoğlu Ö., Örkcü M. Approximation Properties of King Type \((p,q)\)-Bernstein Operators. Iran. J. Sci. Technol. Trans. A Sci. 2017, 43 (10), 249–254. doi:10.1007/s40995-017-0434-3
  14. Phillips G.M. Interpolation and Approximation by Polynomials. In: Dilcher K., Taylor K. (Ed.) CMS Books in Mathematics. Springer New York, NY, 2003.
  15. Kadak U., Mishra V.N., Pandey S. Chlodowsky type generalization of \((p, q)\)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fís. Nat. (Esp.) 2018, 112 (1), 1443–1462. doi:10.1007/s13398-017-0439-y
  16. Khan A., Sharma V. Approximation by \((p,q)\)-Lupaş Stancu Operators. Iran. J. Math. Sci. Inform. 2019, 14 (2), 43–60.
  17. King J.P. Positive linear operators which preserve \(x^2\). Acta Math. Hungar. 2003, 99, 203–208. doi:10.1023/A:1024571126455
  18. Khan K., Lobiyal D.K. Bèzier curves based on Lupaş \((p,q)\)-analogue of Bernstein functions in CAGD. J. Comput. Appl. Math. 2017, 317, 458–477. doi:10.1016/j.cam.2016.12.016
  19. Mohiuddine S.A., Acar T., Alotaib A. Construction of a new family of Bernstein-Kantorovich operators. Math. Methods Appl. Sci. 2017, 40 (18), 7749–7759. doi:org/10.1002/mma.4559
  20. Mursaleen M., Khan A. Generalized \(q\)-Bernstein-Schurer Operators and Some Approximation Theorems. J. Funct. Spaces 2013, article ID 719834. doi:10.1155/2013/719834
  21. Mursaleen M., Nasiruzzaman Md., Ansari K.J., Alotaibi A. Generalized \((p,q)\)-Bleimann-Butzer-Hahn operators and some approximation results. J. Inequal. Appl. 2017, 2017 (1), article ID 310. doi:10.1186/s13660-017-1582-x
  22. Mursaleen M., Nasiruzzaman Md., Nurgali A., Abzhapbarov A. Higher order generalization of Bernstein type operators defined by \((p,q)\)-integers. J. Comput. Anal. Appl. 2018, 25 (5), 817–829.
  23. Mursaleen M., Ansari K.J., Khan A. On \((p,q)\)-analogue of Bernstein Operators. Appl. Math. Comput. 2015, 266, 874–882. doi:10.1016/j.amc.2015.04.090
  24. Mursaleen M., Khan F., Khan A. Approximation by \((p,q)\)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory 2016, 10 (8), 1725–1740. doi:10.1007/s11785-016-0553-4
  25. Fast H. Sur la convergence statistique. Colloq. Math. 1951, 2, 241–244.
  26. Rao N., Wafi A. \((p,q)\)-Bivariate-Bernstein-Chlowdosky Operators. Filomat 2018, 32 (2), 369–378.
  27. Weierstrass K. Über die analytische Darstellbarkeit sogenannter willkürlicher Functionen einer reellen Veränderlichen. Sitzungsber. Akad. Berlin 1885, 633–639.