References

  1. Acar T., Costarelli D., Vinti G. Linear prediction, simultaneous approximation by m-th order Kantorovich type sampling series. Banach J. Math. Anal. 2020, 14 (4), 1481–1508. doi:10.1007/s43037-020-00071-0
  2. Angeloni L., Costarelli D., Vinti G. A characterization of the convergence in variation for the generalized sampling series. Ann. Acad. Sci. Fenn. Math. 2018, 43, 755–767. doi:10.5186/aasfm.2018.4343
  3. Angeloni L., Costarelli D., Vinti G. A characterization of the absolute continuity in terms of convergence in variation for the sampling Kantorovich operators. Mediterr. J. Math. 2019, 16 (2), 44. doi:10.1007/s00009-019-1315-0
  4. Angeloni L., Vinti G. Discrete operators of sampling type, approximation in \(\varphi\)-variation. Math. Nachr. 2018, 291 (4), 546–555. doi:10.1002/mana.201600508
  5. Bardaro C., Mantellini I. Asymptotic expansion of generalized Durrmeyer sampling type series. Jaen J. Approx. 2014, 6 (2), 143–165.
  6. Bardaro C., Mantellini I. A Voronovskaya-type theorem for a general class of discrete operators. Rocky Mountain J. Math. 2009, 39 (5), 1411–1442. doi:10.1216/RMJ-2009-39-5-1411
  7. Bardaro C., Mantellini I. A note on the Voronovskaja theorem for Mellin-Fejer convolution operators. Appl. Math. Lett. 2011, 24 (12), 2064–2067. doi:10.1016/j.aml.2011.05.043
  8. Bardaro C., Faina L., Mantellini I. Quantitative Voronovskaja formulae for generalized Durrmeyer sampling type series. Math. Nachr. 2016, 289 (14–15), 1702–1720. doi:10.1002/mana.201500225
  9. Bardaro C., Karsli H., Vinti G. Nonlinear integral operators with homogeneous kernels: pointwise approximation theorems. Appl. Anal. 2011, 90 (3–4), 463–474. doi:10.1080/00036811.2010.499506
  10. Bardaro C., Musielak J., Vinti G. Nonlinear Integral Operators and Applications. De Gruyter, Berlin, New York, 2003.
  11. Bardaro C., Mantellini I., Stens R., Vautz J., Vinti G. Generalized sampling approximation for multivariate discontinuous signals, application to image processing. In: Zayed A., Schmeisser G. (Eds.) New Perspectives on Approximation and Sampling Theory. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham, 2014, 87–114.
  12. Butzer P.L., Nessel R.J. Fourier Analysis and Approximation, V.1 One-Dimensional Theory. Academic Press, New York, London, 1971.
  13. Butzer P.L., Stens R.L. Sampling theory for not necessarily band-limited functions: an historical overview. SIAM Rev, 1992, 34 (1), 40–53.
  14. Butzer P.L., Ries S., Stens R.L. Approximation of continuous, discontinuous functions by generalized sampling series. J. Approx. Theory 1987, 50 (1), 25–39. doi:10.1016/0021-9045(87)90063-3
  15. Butzer P.L., Stens R.L. Linear prediction by samples from the past. In: Marks R.J. (Ed.) Advanced Topics in Shannon Sampling and Interpolation Theory. Sringer, New York, 1993, 157–183.
  16. Costarelli D., Vinti G. Inverse results of approximation, the saturation order for the sampling Kantorovich series. J. Approx. Theory 2019, 242, 64–82. doi:10.1016/j.jat.2019.03.001
  17. Costarelli D., Vinti G. An inverse result of approximation by sampling Kantorovich series. Proc. Edinb. Math. Soc. 2019, 62 (1), 265–280. doi:10.1017/S0013091518000342
  18. Costarelli D., Minotti A.M., Vinti G. Approximation of discontinuous signals by sampling Kantorovich series. J. Math. Anal. Appl. 2017, 450 (2), 1083–1103. doi:10.1016/j.jmaa.2017.01.066
  19. Costarelli D., Seracini M., Vinti G. A comparison between the sampling Kantorovich algorithm for digital image processing with some interpolation, quasi-interpolation methods. Appl. Math. Comp. 2020, 374, 125046. doi:10.1016/j.amc.2020.125046
  20. Demkiv I.I. On Approximation of the Urysohn operator by Bernstein type operator polynomials. Visn. Lviv. Univ., Ser. Appl. Math. Comp. Sci. 2000, 2, 26–30.
  21. Karsli H. Some convergence results for nonlinear singular integral operators. Demonstr. Math. 2013, 46 (4), 729–740. doi:10.1515/dema-2013-0487
  22. Karsli H. Convergence and rate of convergence by nonlinear singular integral operators depending on two parameters. Appl. Anal. 2006, 85 (6–7), 781–791. doi:10.1080/00036810600712665
  23. Karsli H. Approximation by Urysohn type Meyer-König and Zeller operators to Urysohn integral operators. Results Math. 2017, 72 (3), 1571–1583. doi:10.1007/s00025-017-0729-x
  24. Karsli H. Approximation results for Urysohn-type nonlinear Bernstein operators. In: Mohiuddine S., Acar T. (Eds.) Advances in Summability and Approximation Theory. Springer, Singapore, 2018, 223–241.
  25. Karsli H. Approximation results for Urysohn type two dimensional nonlinear Bernstein operators. Const. Math. Anal. 2018, 1 (1), 45–57. doi:10.33205/cma.453027
  26. Karsli H. Voronovskaya-type theorems for Urysohn type nonlinear Bernstein operators. Math. Methods Appl. Sci. 2019, 42 (16), 5190–5198. doi:10.1002/mma.5261
  27. Karsli H. Some approximation properties of Urysohn type nonlinear operators. Stud. Univ. Babeş-Bolyai Math. 2019, 64 (2), 183–196.
  28. Karsli H. On Urysohn type generalized sampling operators. Dolomites Res. Notes Approx. 2021, 14 (2), 58–67. doi:10.14658/pupj-drna-2021-2-8
  29. Karsli H., Altin H.E. A Voronovskaya-type theorem for a certain nonlinear Bernstein operators. Stud. Univ. Babeş-Bolyai Math. 2015, 60 (2), 249–258.
  30. Makarov V.L., Demkiv I.I. Approximation of the Urysohn operator by operator polynomials of Stancu type. Ukrainian Math. J. 2012, 64 (3), 356–386. doi:10.1007/s11253-012-0652-y (translation of Ukrain. Mat. Zh. 2012, 64 (3), 318–343. (in Ukrainian))
  31. Orlova O., Tamberg G. On approximation properties of generalized Kantorovich-type sampling operators. J. Approx. Theory 2016, 201, 73–86. doi:10.1016/j.jat.2015.10.001
  32. Ries S., Stens R.L. Approximation by generalized sampling series. In: Proc. of the Intern. Conf. on Constructive Theory of Functions, Varna, Bulgaria, May 27–June 2, 1984. Publ. House Bulgarian Acad. of Sci., Sofia, 1984, 746–756.
  33. Urysohn P. On one type of nonlinear integral equations. Mat. Sb. 1923, 31 (2), 236–255. (in Russian)