References

  1. Antonova T., Dmytryshyn R., Kravtsiv V. Branched continued fraction expansions of Horn’s hypergeometric function \(H_3\) ratios. Math. 2021, 9 (2), 148. doi:10.3390/math9020148
  2. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction \(\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+} \sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+} \sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots\) . Ukrainian Math. J. 2020, 72 (7), 1018–1029. doi:10.1007/s11253-020-01841-7 (translation of Ukrain. Math. Zh. 2020, 72 (7), 877–885. doi:10.37863/umzh.v72i7.2342 (in Ukrainian))
  3. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction whose partial denominators are equal to unity. Mat. Stud. 2020, 54 (1), 3–14. doi:10.30970/ms.54.1.3-14
  4. Antonova T.M., Hoyenko N.P. Approximation of Lauricella’s functions \(F_D\) ratio by Nörlund’s branched continued fraction in the complex domain. Mat. Metody Fiz.-Mekh. Polya 2004, 47 (2), 7–15. (in Ukrainian)
  5. Baran O.E. An analog of the Vorpits’kii convergence criterion for branched continued fractions of special form. J. Math. Sci. (N.Y.) 1998, 90 (5), 2348–2351. doi:10.1007/BF02433964 (translation of Mat. Metody Fiz.-Mekh. Polya 1996, 39 (2), 35–38. (in Ukrainian))
  6. Baran O.E. Twin circular domains of convergence of branched continued fractions with inequivalent variables. J. Math. Sci. (N.Y.) 2011, 174 (2), 209–218. doi:10.1007/s10958-011-0291-0 (translation of Mat. Metody Fiz.-Mekh. Polya 2009, 52 (4), 73–80. (in Ukrainian))
  7. Baker G.A., Graves-Morris P. Padé approximants. Cambridge Univ. Press, Cambridge, 1996. doi:10.1017/CBO9780511530074
  8. Bodnar D.I. Branched continued fractions. Naukova Dumka, Kyiv, 1986. (in Russian)
  9. Bodnar D.I., Bilanyk I.B. Estimates of the rate of pointwise and uniform convergence for branched continued fractions with nonequivalent variables. Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 72–82. (in Ukrainian)
  10. Bodnar D.I., Dmytryshyn R.I. Multidimensional associated fractions with independent variables and multiple power series. Ukrainian Math. J. 2019, 71 (3), 370–386. doi:10.1007/s11253-019-01652-5 (translation of Ukrain. Mat. Zh. 2019, 71 (3), 325–339. (in Ukrainian))
  11. Bodnar D.I. Investigation of the convergence of one class of branched continued fractions. In: Scorobogatko V.Ya. (Ed.) Continued fractions and their applications. Inst. Math. AN USSR, Kyiv, 1976. (In Russian)
  12. Bodnar O.S., Dmytryshyn R.I., Sharyn S.V. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2020, 12 (2), 353–359. doi:10.15330/cmp.12.2.353-359
  13. Cuyt A. A review of multivariate Padé approximation theory. J. Comput. Appl. Math. 1985, 1213, 221–232. doi:10.1016/0377-0427(85)90019-6
  14. Cuyt A., Verdonk B. A review of branched continued fraction theory for the construction of multivariate rational approximants. Appl. Numer. Math. 1988, 4 (2–4), 263–271. doi:10.1016/0168-9274(83)90006-5
  15. Cuyt A., Petersen V.B., Verdonk B., Waadeland H., Jones W.B. Handbook of continued fractions for special functions. Springer, Dordrecht, 2008.
  16. Dmytryshyn R.I. Associated branched continued fractions with two independent variables. Ukrainian Math. J. 2015, 66 (9), 1312–1323. doi:10.1007/s11253-015-1011-6 (translation of Ukrain. Mat. Zh. 2014, 66 (9), 1175–1184. (in Ukrainian))
  17. Dmytryshyn R.I. Convergence of multidimensional A- and J-fractions with independent variables. Comput. Methods Funct. Theory 2021. doi:10.1007/s40315-021-00377-6
  18. Dmytryshyn R.I. Convergence of some branched continued fractions with independent variables. Mat. Stud. 2017, 47 (2), 150–159. doi:10.15330/ms.47.2.150-159
  19. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables corresponding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153–1870. doi:10.1017/prm.2019.2
  20. Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2019, 11 (1), 54–58. doi:10.15330/cmp.11.1.54-58
  21. Dmytryshyn R.I. On the expansion of some functions in a two-dimensional g-fraction with independent variables. J. Math. Sci. 2012, 181 (3), 320–327. doi:10.1007/s10958-012-0687-5 (translation of Mat. Metody Fiz.-Mekh. Polya 2010, 53 (4), 56–69. (in Ukrainian))
  22. Dmytryshyn R.I. The multidimensional generalization of g-fractions and their application. J. Comp. and Appl. Math. 2004, 164165, 265–284. doi:10.1016/S0377-0427(03)00642-3
  23. Dmytryshyn R.I. The two-dimensional g-fraction with independent variables for double power series. J. Approx. Theory 2012, 164 (12), 1520–1539. doi:10.1016/j.jat.2012.09.002
  24. Dmytryshyn R.I. Two-dimensional generalization of the Rutishauser qd-algorithm. J. Math. Sci. 2015, 208 (3), 301–309. doi:10.1007/s11253-015-1011-6 (translation of Mat. Metody Fiz.-Mekh. Polya 2014, 56 (4), 6–11. (in Ukrainian))
  25. Holub A.P., Pozharskiy O.A., Chernetska L.O. Generalized moment representations and multivariate multipoint Padé approximants. Ukrainian Math. J. 2020, 71 (10), 1522–1540. doi:10.1007/s11253-020-01729-6 (translation of Ukrain. Mat. Zh. 2019, 71 (10), 1331–1346. (in Ukrainian))
  26. Hoyenko N., Antonova T., Rakintsev S. Approximation for ratios of Lauricella–Saran fuctions \(F_S\) with real parameters by a branched continued fractions. Math. Bul. Shevchenko Sci. Soc. 2011, 8, 28–42. (in Ukrainian)
  27. Lascu D., Sebe G.I. A Gauss–Kuzmin–Lévy theorem for Rényi-type continued fractions. Acta Arith. 2020, 193 (3), 283–292.
  28. Lascu D., Sebe G.I. A Lochs-type approach via entropy in comparing the efficiency of different continued fraction algorithms. Math. 2021, 9 (3), 255. doi:10.3390/math9030255
  29. Murphy J.A., O’Donohoe M.R. A two-variable generalization of the Stieltjes-type continued fraction. J. Comput. Appl. Math. 1978, 4 (3), 181–190. doi:10.1016/0771-050x(78)90002-5
  30. Komatsu T. Branched continued fractions associated with Hosoya index of the tree graph. MATCH Commun. Math. Comput. Chem. 2020, 84 (2), 399–428.
  31. Komatsu T. Continued fraction expansions of the generating functions of Bernoulli and related numbers. Indag. Math. 2020, 31 (4), 695–713. doi:10.1016/j.indag.2020.06.006
  32. Kuchminska K.Y., Vozna S.M. Development of an N-multiple power series into an N-dimensional regular C-fraction. J. Math. Sci. 2020, 246 (2), 201–208. doi:10.1007/s10958-020-04730-3 (translation of Mat. Metody Fiz.-Mekh. Polya 2017, 60 (3), 70–75. (in Ukrainian))
  33. Kuchminskaya K., Siemaszko W. Rational approximation and interpolation of functions by branched continued fractions. In: Gilewicz J., Pindor M., Siemaszko W. (Eds.) Rational approximation and its applications in mathematics and physics. Lecture Notes in Mathematics, 1237. Springer, Berlin, Heidelberg, 1987.
  34. Pétréolle M., Sokal A.D., Zhu B.-X. Lattice paths and branched continued fractions: An infinite sequence of generalizations of the Stieltjes-Rogers and Thron-Rogers polynomials, with coefficientwise Hankel-total positivity. arXiv 2020, arXiv:1807.03271v2.
  35. Jones W.B., Thron W.J. Continued fractions: analytic theory and applications. Addison-Wesley Pub. Co., Reading, MA, 1980.
  36. Sebe G.I., Lascu D. Convergence rate for Rényi-type continued fraction expansions. Period. Math. Hung. 2020, 81 (2), 239–249. doi:10.1007/s10998-020-00325-2
  37. Shabat B.V. Introduce in the complex analysis. Nauka, Moscow, 1969. (in Russian)
  38. Siemaszko W. Branched continued fractions for double power series. J. Comput. Appl. Math. 1980, 6 (2), 121–125. doi:10.1016/0771-050x(80)90005-4
  39. Scorobogatko V.Ya. Theory of branched continued fractions and its applications in computational mathematics. Nauka, Moscow, 1983. (in Russian)