References
- Akgün R. Trigonometric approximation of functions in generalized
Lebesgue spaces with variable exponent. Ukrainian Math. J. 2011,
63 (1), 3–23.
- Akgün R. Polynomial approximation of functions in weighted
Lebesgue and Smirnov spaces with nonstandard growth. Georgian Math.
J. 2011, 18 (2), 203–235. doi:10.1515/gmj.2011.0022
- Akgün R., Kokilashvili V. The refined direct and converse
inequalities of trigonometric approximation in weighted variable
exponent Lebesgue spaces. Georgian Math. J. 2011,
18 (3), 399–423. doi:10.1515/GMJ.2011.0037
- Almeida A., Hasanov J., Samko S. Maximal and potential operators
in variable exponent Morrey spaces. Georgian Math. J. 2008,
15 (2), 195–208. doi:10.1515/GMJ.2008.195
- Bernstein S. Sur l’ordre de la meilleure approximation des fonctiones
continues par des polynomes de degré donné. Bruxelles, Hayez, imprimeur
des académies royales, 1912.
- Cakir Z., Aykol C., Soylemez D., Serbetci A. Approximation by
trigonometric polynomials in Morrey spaces. Trans. Natl. Acad. Sci.
Azerb. Ser. Phys.-Tech. Math. Sci. 2019, 39 (1),
24–37.
- Cakir Z., Aykol C., Soylemez D., Serbetci A. Approximation by
trigonometric polynomials in weighted Morrey spaces. Tbilisi Math.
J. 2020, 13 (1), 123–138.
doi:10.32513/tbilisi/1585015225
- Devore R.A., Lorentz G.G. Constructive approximation. Grundlehren der
Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1993.
- Diening L., Hästö P. Muckenhoupt weights in variable exponent spaces.
Preprint, Mathematische Fakultät, Albert Ludwings Universität
Freiburg.
- Diening L., Hästö P., Nekvinda A. Open
problems in variable exponent Lebesgue and Sobolev spaces. In: Proc. of
the Conf. Function Spaces, Differential Operators and nonlinear
analysis, Milovy, Bohemian-Moravian Uplands, Czech Republic, May 28-June
2, 2004, Math. Inst. Acad. Aci. Czech., 2005, 38–58.
- Guliyev V.S., Hasanov J., Badalov X.A. Maximal and singular
integral operators and their commutators on generalized weighted Morrey
spaces with variable exponent. Math. Inequal. Appl. 2018,
21 (1), 41–61. doi:10.7153/mia-2018-21-04
- Guliyev V.S., Hasanov J., Samko S. Boundedness of the maximal,
potential and singular operators in the generalized variable exponent
Morrey spaces. J. Math. Sci.(N.Y.) 2010, 170 (4),
423–443. doi:10.1007/s10958-010-0095-7
- Guliyev V.S., Ghorbanalizadeh A., Sawano Y. Approximation by
trigonometric polynomials in variable exponent Morrey spaces. Anal.
Math. Phys. 2019, 9, 1265–1285.
doi:10.1007/s13324-018-0231-y.
- Israfilov D., Kokilashvili V., Samko S. Approximation in weighted
Lebesgue and Smirnov spaces with variable exponents. Proc.
A.Razmadze Math. Inst. 2007, 143, 25–35.
- Israfilov D., Testici A. Approximation problems in the Lebesgue
spaces with variable exponent. J. Math. Anal. Appl. 2017,
459 (1), 112–123. doi:10.1016/j.jmaa.2017.10.067
- Israfilov D., Testici A. Some inverse and simultaneous
approximation theorems in weighted variable exponent Lebesgue
spaces. Analysis Math. 2018, 44 (4), 475–492.
doi:10.1007/s10476-018-0403-x
- Izuki M., Nakai E., Sawano Y. Function spaces with variable
exponents. An introduction. Sci. Math. Jpn. 2014,
77 (2), 187–315.
- Kasumov M.G. On the basicity of Haar systems in the weighted
variable exponent Lebesgue spaces. Vladikavkaz. Math. Journal 2014,
16 (3), 38–46.
- Kopaliani T.S. Infimal convolution and Muckenhoupt \(A_{p(\cdot)}\) condition in variable \(L_{p}\) spaces. Arch. Math. 2007,
89 (2), 185–192.
- Kokilashvili V.M, Yildirir Y.E. On the approximation in weighted
Lebesgue spaces. Proc. A. Razmadze Math. Inst. 2007,
143, 103–113.
- Ky N.X. On approximation by trigonometric polynomials in \(L_{p,u}\) spaces. Studia Sci. Math.
Hungar. 1993, 28,–188.
- Ky N.X. Moduli of mean smoothness and approximation with \(A_{p}\) weights. Ann. Univ. Sci. 1997,
40, 37–48.
- Maeda F.-Y., Mizuta Y., Ohno T., Shimomura T. Trudinger’s
inequality and continuity of potentials on Musielak-Orlicz-Morrey
spaces. Potential Anal. 2013, 38 (2), 515–535.
doi:10.1007/s11118-012-9284-y
- Quade E.S. Trigonometric approximation in the mean. Duke
Math. J. 1937, 3 (3), 529–543.
doi:10.1215/S0012-7094-37-00342-9
- Rafeiro H., Samko N., Samko S. Morrey-Campanato spaces: an
overview. Oper. Theory Adv. Appl. 2013, 228,
293–323.
- Sawano Y., Shimomura T. Sobolev embeddings for Riesz potentials
of functions in non-doubling Morrey spaces of variable exponents.
Collect. Math. 2013, 64 (3), 313–350.
doi:10.1007/s13348-013-0082-7
- Sawano Y., Shimomura T. Sobolev embeddings for Riesz potentials
of functions in Musielak-Orlicz-Morrey spaces over non-doubling measure
spaces. Integral Transforms Spec. Funct. 2014, 25
(12), 976–991. doi:10.1080/10652469.2014.955099
- Shakh-Emirov T.N. On Uniform Boundedness of some Families of
Integral Convolution Operators in Weighted Variable Exponent Lebesgue
Spaces. Izv. Saratov Univ. Math. Mech. Inform. 2014,
14 4 (1), 422–427. doi:10.18500/1816-9791-2014-14-4-422-427
- Stechkin S.B. On the order of the best approximations of
continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 1951,
15 (3), 219–242.
- Timan A.F. Theory of Approximation of Functions of a Real Variable.
English translation 1963, Pergamon Press, The MacMillan Co., Russian
original published in Moscow by Fizmatgiz, 1960.
doi:10.1016/C2013-0-05307-8
- Timan A.F., Timan M.F. The generalized modulus of continuity and
best mean approximation. Dokl. Akad. Nauk. SSSR 1950,
71 (1), 17–20.
- Triebel H. Hybrid Function Spaces, Heat and Navier-Stokes Equations.
Tracts in Mathematics 2014, 24, European Mathematical
Society (EMS), Zurich (2014). doi:10.4171/150