References

  1. Akgün R. Trigonometric approximation of functions in generalized Lebesgue spaces with variable exponent. Ukrainian Math. J. 2011, 63 (1), 3–23.
  2. Akgün R. Polynomial approximation of functions in weighted Lebesgue and Smirnov spaces with nonstandard growth. Georgian Math. J. 2011, 18 (2), 203–235. doi:10.1515/gmj.2011.0022
  3. Akgün R., Kokilashvili V. The refined direct and converse inequalities of trigonometric approximation in weighted variable exponent Lebesgue spaces. Georgian Math. J. 2011, 18 (3), 399–423. doi:10.1515/GMJ.2011.0037
  4. Almeida A., Hasanov J., Samko S. Maximal and potential operators in variable exponent Morrey spaces. Georgian Math. J. 2008, 15 (2), 195–208. doi:10.1515/GMJ.2008.195
  5. Bernstein S. Sur l’ordre de la meilleure approximation des fonctiones continues par des polynomes de degré donné. Bruxelles, Hayez, imprimeur des académies royales, 1912.
  6. Cakir Z., Aykol C., Soylemez D., Serbetci A. Approximation by trigonometric polynomials in Morrey spaces. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 2019, 39 (1), 24–37.
  7. Cakir Z., Aykol C., Soylemez D., Serbetci A. Approximation by trigonometric polynomials in weighted Morrey spaces. Tbilisi Math. J. 2020, 13 (1), 123–138. doi:10.32513/tbilisi/1585015225
  8. Devore R.A., Lorentz G.G. Constructive approximation. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1993.
  9. Diening L., Hästö P. Muckenhoupt weights in variable exponent spaces. Preprint, Mathematische Fakultät, Albert Ludwings Universität Freiburg.
  10. Diening L., Hästö P., Nekvinda A. Open problems in variable exponent Lebesgue and Sobolev spaces. In: Proc. of the Conf. Function Spaces, Differential Operators and nonlinear analysis, Milovy, Bohemian-Moravian Uplands, Czech Republic, May 28-June 2, 2004, Math. Inst. Acad. Aci. Czech., 2005, 38–58.
  11. Guliyev V.S., Hasanov J., Badalov X.A. Maximal and singular integral operators and their commutators on generalized weighted Morrey spaces with variable exponent. Math. Inequal. Appl. 2018, 21 (1), 41–61. doi:10.7153/mia-2018-21-04
  12. Guliyev V.S., Hasanov J., Samko S. Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces. J. Math. Sci.(N.Y.) 2010, 170 (4), 423–443. doi:10.1007/s10958-010-0095-7
  13. Guliyev V.S., Ghorbanalizadeh A., Sawano Y. Approximation by trigonometric polynomials in variable exponent Morrey spaces. Anal. Math. Phys. 2019, 9, 1265–1285. doi:10.1007/s13324-018-0231-y.
  14. Israfilov D., Kokilashvili V., Samko S. Approximation in weighted Lebesgue and Smirnov spaces with variable exponents. Proc. A.Razmadze Math. Inst. 2007, 143, 25–35.
  15. Israfilov D., Testici A. Approximation problems in the Lebesgue spaces with variable exponent. J. Math. Anal. Appl. 2017, 459 (1), 112–123. doi:10.1016/j.jmaa.2017.10.067
  16. Israfilov D., Testici A. Some inverse and simultaneous approximation theorems in weighted variable exponent Lebesgue spaces. Analysis Math. 2018, 44 (4), 475–492. doi:10.1007/s10476-018-0403-x
  17. Izuki M., Nakai E., Sawano Y. Function spaces with variable exponents. An introduction. Sci. Math. Jpn. 2014, 77 (2), 187–315.
  18. Kasumov M.G. On the basicity of Haar systems in the weighted variable exponent Lebesgue spaces. Vladikavkaz. Math. Journal 2014, 16 (3), 38–46.
  19. Kopaliani T.S. Infimal convolution and Muckenhoupt \(A_{p(\cdot)}\) condition in variable \(L_{p}\) spaces. Arch. Math. 2007, 89 (2), 185–192.
  20. Kokilashvili V.M, Yildirir Y.E. On the approximation in weighted Lebesgue spaces. Proc. A. Razmadze Math. Inst. 2007, 143, 103–113.
  21. Ky N.X. On approximation by trigonometric polynomials in \(L_{p,u}\) spaces. Studia Sci. Math. Hungar. 1993, 28,–188.
  22. Ky N.X. Moduli of mean smoothness and approximation with \(A_{p}\) weights. Ann. Univ. Sci. 1997, 40, 37–48.
  23. Maeda F.-Y., Mizuta Y., Ohno T., Shimomura T. Trudinger’s inequality and continuity of potentials on Musielak-Orlicz-Morrey spaces. Potential Anal. 2013, 38 (2), 515–535. doi:10.1007/s11118-012-9284-y
  24. Quade E.S. Trigonometric approximation in the mean. Duke Math. J. 1937, 3 (3), 529–543. doi:10.1215/S0012-7094-37-00342-9
  25. Rafeiro H., Samko N., Samko S. Morrey-Campanato spaces: an overview. Oper. Theory Adv. Appl. 2013, 228, 293–323.
  26. Sawano Y., Shimomura T. Sobolev embeddings for Riesz potentials of functions in non-doubling Morrey spaces of variable exponents. Collect. Math. 2013, 64 (3), 313–350. doi:10.1007/s13348-013-0082-7
  27. Sawano Y., Shimomura T. Sobolev embeddings for Riesz potentials of functions in Musielak-Orlicz-Morrey spaces over non-doubling measure spaces. Integral Transforms Spec. Funct. 2014, 25 (12), 976–991. doi:10.1080/10652469.2014.955099
  28. Shakh-Emirov T.N. On Uniform Boundedness of some Families of Integral Convolution Operators in Weighted Variable Exponent Lebesgue Spaces. Izv. Saratov Univ. Math. Mech. Inform. 2014, 14 4 (1), 422–427. doi:10.18500/1816-9791-2014-14-4-422-427
  29. Stechkin S.B. On the order of the best approximations of continuous functions. Izv. Akad. Nauk SSSR Ser. Mat. 1951, 15 (3), 219–242.
  30. Timan A.F. Theory of Approximation of Functions of a Real Variable. English translation 1963, Pergamon Press, The MacMillan Co., Russian original published in Moscow by Fizmatgiz, 1960. doi:10.1016/C2013-0-05307-8
  31. Timan A.F., Timan M.F. The generalized modulus of continuity and best mean approximation. Dokl. Akad. Nauk. SSSR 1950, 71 (1), 17–20.
  32. Triebel H. Hybrid Function Spaces, Heat and Navier-Stokes Equations. Tracts in Mathematics 2014, 24, European Mathematical Society (EMS), Zurich (2014). doi:10.4171/150