References
- Aron R.M., Klimek M. Supremum norms for quadratic
polynomials. Arch. Math. (Basel) 2001, 76 (1),
73–80. doi:10.1007/s000130050544
- Cavalcante M.V., Pellegrino D.M., Teixeira E.V. Geometry of
multilinear forms. Commun. Contemp. Math. 2020, 22
(2). doi:10.1142/S0219199719500111
- Choi Y.S., Kim S.G., Ki H. Extreme polynomials and multilinear
forms on \(l_1\). J. Math. Anal.
Appl. 1998, 228 (2), 467–482.
doi:10.1006/jmaa.1998.6161
- Choi Y.S., Kim S.G. The unit ball of \(\mathcal{P}(^2l_2^2)\). Arch. Math.
(Basel) 1998, 71, 472–480.
doi:10.1007/s000130050292
- Choi Y.S., Kim S.G. Extreme polynomials on \(c_0\). Indian J. Pure Appl. Math.
1998, 29 (10), 983–989.
- Choi Y.S., Kim S.G. Smooth points of the unit ball of the space
\(\mathcal{P}(^2l_1)\). Results
Math. 1999, 36, 26–33. doi:10.1007/BF03322099
- Choi Y.S., Kim S.G. Exposed points of the unit balls of the
spaces \(\mathcal{P}(^2l_p^2)~(p=1,
2,\infty)\). Indian J. Pure Appl. Math. 2004,
35 (1), 37–41.
- Dineen S. Complex Analysis on Infinite Dimensional Spaces.
Springer-Verlag, London, 1999.
- Gámez-Merino J., Muñoz-Fernández G., Sánchez V., Seoane-Sepúlveda J.
Inequalities for polynomials on the unit square via the Krein-Milman
Theorem. J. Convex Anal. 2013, 20 (1),
125–142.
- Grecu B.C. Geometry of three-homogeneous polynomials on real
Hilbert spaces. J. Math. Anal. Appl. 2000, 246
(1), 217–229. doi:10.1006/jmaa.2000.6783
- Grecu B.C. Smooth 2-homogeneous polynomials on Hilbert
spaces. Arch. Math. (Basel) 2001, 76, 445–454.
doi:10.1007/PL00000456
- Grecu B.C. Geometry of 2-homogeneous polynomials on \(l_p\) spaces, \(1<p<\infty\). J. Math. Anal.
Appl. 2002, 273 (2), 262–282.
doi:10.1016/S0022-247X(02)00217-2
- Grecu B.C. Extreme 2-homogeneous polynomials on Hilbert
spaces. Quaest. Math. 2002, 25 (4), 421–435.
doi:10.2989/16073600209486027
- Grecu B.C. Geometry of homogeneous polynomials on two-dimensional
real Hilbert spaces. J. Math. Anal. Appl. 2004,
293 (2), 578–588. doi:10.1016/jmaa.2004.01.020
- Grecu B.C., Muñoz-Fernández G.A., Seoane-Sepúlveda J.B. The unit
ball of the complex \(P(^3H)\).
Math. Z. 2009, 263, 775–785.
doi:10.1007/s00209-008-0438-y
- Kim S.G. Exposed 2-homogeneous polynomials on \(\mathcal{P}(^2l_p^2)~(1\leq p\leq
\infty)\). Math. Proc. R. Ir. Acad. 2007,
107, 123–129.
- Kim S.G. The unit ball of \({\mathcal
L}_s(^2l_{\infty}^2)\). Extracta Math. 2009,
24, 17–29.
- Kim S.G. The unit ball of \({\mathcal
P}(^2d_{*}(1, w)^2)\). Math. Proc. R. Ir. Acad. 2011,
111 (2), 79–94.
- Kim S.G. The unit ball of \({\mathcal
L}_s(^2d_*(1, w)^2)\). Kyungpook Math. J. 2013,
53, 295–306.
- Kim S.G. Smooth polynomials of \({\mathcal P}(^2d_*(1,w)^2)\). Math.
Proc. R. Ir. Acad. 2013, 113A (1), 45–58.
- Kim S.G. Extreme bilinear forms of \({\mathcal L}(^2d_*(1,w)^2)\).
Kyungpook Math. J. 2013, 53, 625–638.
- Kim S.G. Exposed symmetric bilinear forms of \({\mathcal L}_s(^2d_*(1, w)^2)\).
Kyungpook Math. J. 2014, 54, 341–347.
- Kim S.G. Polarization and unconditional constants of \({\mathcal P}(^2d_{*}(1, w)^2)\).
Commun. Korean Math. Soc. 2014, 29 (3), 421–428.
doi:10.4134/CKMS.2014.29.3.421
- Kim S.G. Exposed bilinear forms of \({\mathcal L}(^2d_*(1,w)^2)\).
Kyungpook Math. J. 2015, 55, 119–126.
- Kim S.G. Exposed 2-homogeneous polynomials on the two-dimensional
real predual of Lorentz sequence space. Mediterr. J. Math. 2016,
13, 2827–2839. doi:10.1007/s00009-015-0658-4
- Kim S.G. The unit ball of \({\mathcal
L}(^2 {\mathbb R}^2_{h(w)})\). Bull. Korean Math. Soc. 2017,
54 (2), 417–428. doi:10.4134/BKMS.b150851
- Kim S.G. Extremal problems for \({\mathcal
L}_s(^2\mathbb{R}_{h(w)}^2)\). Kyungpook Math. J. 2017,
57, 223–232.
- Kim S.G. The unit ball of \({\mathcal
L}_s(^2l_{\infty}^3)\). Comment. Math. 2017,
57 (1), 1–7.
- Kim S.G. The geometry of \({\mathcal
L}_s(^3l_{\infty}^2)\). Commun. Korean Math. Soc. 2017,
32 (4), 991–997.
doi:10.4134/CKMS.c170016
- Kim S.G. Extreme \(2\)-homogeneous polynomials on the plane
with a hexagonal norm and applications to the polarization and
unconditional constants. Studia Sci. Math. Hungar. 2017,
54 (3), 362–393. doi:10.1556/012.2017.54.3.1371
- Kim S.G. The geometry of \({\mathcal
L}(^3l_{\infty}^2)\) and optimal constants in the
Bohnenblust-Hill inequality for multilinear forms and polynomials.
Extracta Math. 2018, 33 (1), 51–66.
- Kim S.G. Extreme bilinear forms on \(\mathbb{R}^n\) with the supremum norm.
Period. Math. Hungar. 2018, 77, 274–290.
doi:10.1007/s10998-018-0246-z
- Kim S.G. Exposed polynomials of \({\mathcal
P}(^2\mathbb{R}^2_{h(\frac{1}{2})})\). Extracta Math. 2018,
33 (2), 127–143.
- Kim S.G. The unit ball of the space of bilinear forms on \(\mathbb{R}^3\) with the supremum norm.
Commun. Korean Math. Soc. 2019, 34 (2), 487–494.
doi:10.4134/CKMS.c180111
- Kim S.G. Smooth points of \({\mathcal
L}_s(^nl_{\infty}^2)\). Bull. Korean Math. Soc. 2020,
57 (2), 443–447. doi:10.4134/BKMS.b190311
- Kim S.G. Extreme points of the space \({\mathcal L}(^2l_{\infty})\). Commun.
Korean Math. Soc. 2020, 35 (3), 799–807. doi:10.4134/CKMS.c190300
- Kim S.G. Extreme points, exposed points and smooth points of the
space \({\mathcal
L}_s(^2l_{\infty}^3)\). Kyungpook Math. J. 2020,
60, 485–505. doi:10.5666/KMJ.2020.60.3.485
- Kim S.G. The unit balls of \({\mathcal
L}(^nl_{\infty}^m)\) and \({\mathcal
L}_s(^nl_{\infty}^m)\). Studia Sci. Math. Hungar. 2020,
57 (3), 267–283. doi:10.1556/012.2020.57.3.1470
- Kim S.G. Extreme and exposed points of \({\mathcal L}(^nl_{\infty}^2)\) and \({\mathcal L}_s(^nl_{\infty}^2)\).
Extracta Math. 2020, 35 (2), 127–135. doi:10.17398/2605-5686.35.2.127
- Kim S.G. Smooth points of \({\mathcal
L}(^nl_{\infty}^m)\) and \({\mathcal
L}_s(^nl_{\infty}^m)\). Comment. Math. 2020,
60 (1-2), 13–21.
- Kim S.G. Extreme and exposed symmetric bilinear forms on the
space \({\mathcal
L}_s(^2l_{\infty}^2)\). Carpathian Math. Publ. 2020,
12 (2), 340–352. doi:10.15330/cmp.12.2.340-352
- Kim S.G. Geometry of multilinear forms on \({\mathbb R}^m\) with a certain norm.
Acta Sci. Math. (Szeged) 2021, 87 (1–2), 233–245.
doi:10.14232/actasm-020-824-2
- Kim S.G. Geometry of multilinear forms on \(l_1\). Acta Comment. Univ. Tartu.
Math. 2021, 25 (1), 57–66.
doi:10.12097/ACUTM.2021.25.04
- Kim S.G. Smooth polynomials of \(P(^2
\mathbb{R}^2_{h(\frac{1}{2})})\). Preprint.
- Kim S.G., Lee S.H. Exposed 2-homogeneous polynomials on Hilbert
spaces. Proc. Amer. Math. Soc. 2003, 131,
449–453.
- Krein M.G., Milman D.P. On extreme points of regular convex
sets. Studia Math. 1940, 9, 133–137.
- Milev L., Naidenov N. Strictly definite extreme points of the
unit ball in a polynomial space. C. R. Acad. Bulgare Sci. 2008,
61 (11), 1393–1400.
- Milev L., Naidenov N. Semidefinite extreme points of the unit
ball in a polynomial space. J. Math. Anal. Appl. 2013,
405 (2), 631–641. doi:10.1016/j.jmaa.2013.04.026
- Muñoz-Fernández G., Pellegrino D., Seoane-Sepúlveda J., Weber A.
Supremum norms for 2-homogeneous polynomials on circle sectors.
J. Convex Anal. 2014, 21 (3), 743–764.
- Muñoz-Fernández G.A., Révész S.G., Seoane-Sepúlveda J.B. Geometry
of homogeneous polynomials on non symmetric convex bodies. Math.
Scand. 2009, 105 (1), 147–160.
- Muñoz-Fernández G., Seoane-Sepúlveda J. Geometry of Banach spaces
of trinomials. J. Math. Anal. Appl. 2008, 340 (2),
1069–1087. doi:10.1016/j.jmaa.2007.09.010
- Neuwirth S. The maximum modulus of a trigonometric
trinomial. J. Anal. Math. 2008, 104, 371–396. doi:10.1007/s11854-008-0028-2
- Ryan R.A., Turett B. Geometry of spaces of polynomials. J.
Math. Anal. Appl. 1998, 221 (2), 698–711.
doi:10.1006/jmaa.1998.5942
- Treanţă S. Constrained variational problems governed by
second-order Lagrangians. Appl. Anal. 2020, 99
(9), 1467–1484.
- Treanţă S., Arana-Jiménez M., Antczak T. A necessary and
sufficient condition on the equivalence between local and global optimal
solutions in variational control problems. Nonlinear Anal. 2020,
191. doi:10.1016/j.na.2019.111640