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m-quasi-+-Einstein contact metric manifolds

Kumara H.A.!, Venkatesha V.»* Naik D.M.2

The goal of this article is to introduce and study the characterstics of m-quasi-*-Einstein metric
on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient
m-quasi-*-Einstein metric, then M is y-Einstein and f is constant. Next, we show that in a Sasakian
manifold if ¢ represents an m-quasi-*-Einstein metric with a conformal vector field V, then V is
Killing and M is 5-Einstein. Finally, we prove that if a non-Sasakian («, y#)-contact manifold admits
a gradient m-quasi-*-Einstein metric, then it is N (x)-contact metric manifold or a *-Einstein.
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Introduction

Let M be an almost contact metric manifold. Corresponding to Ricci tensor, S. Tachibana
[22] introduced the idea of *-Ricci tensor. In [13], T. Hamada apply these ideas to real hyper-
surfaces in complex spaceforms. The *-Ricci tensor S* is defined by

S*(X,Y) = %trace{go oR(X,pY)}

for all vector fields X,Y on M and ¢ is a (1,1)-tensor field. If *-Ricci tensor is a constant
multiple of g(X,Y) forall X, Y L ¢, then M is said to be a *-Einstein manifold. T. Hamada gave
a complete classification of *-Einstein hypersurfaces, and further T.A. Ivey and PJ. Ryan [15]
updated and refined the work of T. Hamada [13]. Further, the idea of *-Ricci tensor on contact
Riemannian manifolds are considered in [14].

As the generalization of *-Einstein metric, G. Kaimakamis and K. Panagiotidou [17] in-
troduced the so-called *-Ricci soliton where they essentialy modified the definition of Ricci
soliton by replacing the Ricci tensor S in Ricci soliton condition with the *-Ricci tensor S*.
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Definition. A Riemannian metric § on M is called a *-Ricci soliton if there exist a constant A
and a vector field V such that

1
Stvg+5" = A8 (1)
for all vector fields X,Y on M, where £y denotes the Lie-derivative in the direction of V.

If the soliton constant A in the defining condition (1) is a smooth function, then we say that
it is an almost *-Ricci soliton. Moreover, if the vector field V is a gradient of a smooth function
f, then we say that it is gradient almost *-Ricci soliton. Note that a *-Ricci soliton is trivial if
the vector field V is Killing, and in this case the manifold becomes *-Einstein.

Einstein metrics and their generalizations are important both in mathematics and physics.
A natural extension of the Ricci tensor is the m-Bakry-Emery Ricci tensor

1
S}”:S+Hessf—adf®df,

namely one puts 0 < m < oo, f is smooth function on M and Hess f stands for the Hessian
form. Instead of a gradient of a smooth function f by a vector field V, m-Bakry-Emery Ricci
tensor was extended by A. Barros and E. Ribeiro in [1] and M. Limoncu in [18] for an arbitrary
vector field V on M as follows

1 1 4 b
S?:S-Fiﬁvg_av ® V7, 2)
where V? is the canonical 1-form associated to the vector field V. With this setting (M, g, V,m)
is called an m-quasi-Einstein metric, if there exist a vector field V and a constant A on M such

that
ST =85+ —1£V - —1 VoVl =2 (3)
f 2 8 m 8

It is interesting to note that equation (3) reduces to the so-called Ricci solitons when
m = oo, and hence, it is considered as a direct generalization of Ricci soliton. The study of
m-quasi Einstein metric in the framework of contact metric manifolds are considered when
V is a gradient of a smooth function f on M, see [8-10]. Very recently, in the framework of
contact metric manifolds equation (3) has been studied by A. Ghosh in [12].

Almost contact Riemannian manifolds can be viewed as an odd-dimensional analogue of
almost Hermitian manifolds. So few authors in the earlier days called them by the name almost
co-Hermitian manifolds (see, for example, [16]). Contact Riemannian manifolds, special classes
of almost contact Riemannian manifolds, have recently been increasing interest in differential
geometry. During the last few years, conformal vector fields, *-Ricci solitons, gradient almost
*-Ricci solitons, and almost *-Ricci solitons are studied by several authors on almost contact
Riemannian manifold. The studies of *-Ricci solitons on almost contact Riemannian manifolds
were first initiated by A. Ghosh and D.S. Patra [11]. In the paper, the author showed that a
complete Sasakian metric is an almost gradient *-Ricci soliton, then it is positive-Sasakian and
isometric to a unit sphere $?**1. Next, P. Majhi et al. [19] studied *-Ricci soliton on Sasakian
3-manifolds. Further, V. Venkatesha et al. [24] and X. Dai et al. [7] considered the almost *-Ricci
soliton on Kenmotsu manifolds and (x, #)’-almost Kenmotsu manifolds. Recently, D.M. Naik
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et al. [20] and X. Dai [6] studied the *-Ricci solitons in the backkground of cosymplectic man-
ifolds and (x, jt)-almost cosymplectic manifolds. Y. Wang [26] considered the *-Ricci solitons
on contact metric 3-manifolds. In this setting, it is worth to mention that in the background
of paracontact geometry, the authors in [21,25] studied *-Ricci solitons on paraSasakian mani-
folds and para Kenmotsu manifolds respectively.

Motivated by the above cited works about *-Ricci solitons, in this work we essentially mod-
ified the m-Bakry-Emery Ricci tensor by replacing the Ricci tensor S in the fundamental equa-
tion (2) with the x-Ricci tensor S*, called m-Bakry-Emery *-Ricci tensor

*M * 1 1 b b
_ - — -V VY.

In this setting, (M, g) is called an m-quasi *-Einstein metric, if there exist a vector V, real
constant A and m, 0 < m < oo, such that

* 1 _l b b _
S +2£Vg mV ® V7 =Ag. (4)

The above equation is very much interesting when m = co. In this case, it is exactly the *-Ricci
soliton and hence, it is considered as a direct generalization of *-Ricci solitons. If the vector
tield V is a gradient of a smooth function f, then we say that it is gradient m-quasi *-Einstein
metric and in such a case (4) becomes

S*+Hessf—%df®df:)tg. (5)

This paper focuses on the study of contact metric manifolds, which admits a m-quasi
*-Einstein metric. The paper is organized as follows. In Section 2, preliminaries relations
and basic results for contact metric manifolds are presented. In Section 3, we show that if there
is a gradient m-quasi *-Einstein structure (g, f, m) associated with the Sasakian metric g, then
M is y-Einstein and f is constant. Next, we proved that in a Sasakian manifold if g repre-
sents a m-quasi *-Einstein metric with V conformal, then V is Killing and M is #-Einstein. We
study gradient m-quasi *-Einstein metric on non-Sasakian (x, j)-contact manifold and prove
that either it is N(x)-contact metric manifold or it is *-Einstein.

1 Preliminaries

First, we look into the basic definitions and formulas of contact metric manifolds. A (2n+1)-
dimensional smooth manifold M is said to be contact if it admits a global 1-form 7 such that
7 A (dn)" # 0 on M. This 1-form is called a contact 1-form. For a contact 1-form #, there exists
a unique vector field ¢ such that dy (¢, X) = 0 and #(¢) = 1. Polarizing dn on the contact
sub-bundle D (defined by 17 = 0), we obtain a Riemannian metric ¢ and a (1, 1)-tensor field ¢
such that

dp(X,Y) =¥(X,Y) = g(X,9Y), 7(X) =g(X,¢), ¢*X=-X+n(X) (6)

for all X,Y € TM. From these equations one can also deduce that ¢¢ = 0, 7o ¢ = O,
89X, 9Y) = g(X,Y) —n(X)y(Y).

The structure (¢, &,%,g) on M is known as a contact metric structure and the metric g is
called an associated metric. A Riemannian manifold M together with the structure (¢,¢,7,g)
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is said to be a contact metric manifold and we denote it by (M, ¢, ¢, 7, ). On a contact metric
manifold, the following identities are known

Vx¢=—¢X—¢hX, he+¢h=0 (7)

for any vector fields X,Y on M and V denotes the operator of covariant differentiation of g.
If the vector field ¢ is Killing (equivalently, i = 0) with respect to g, then the contact metric
manifold M is said to be K-contact. On a K-contact (Sasakian) manifold the following formulas
are known (see [2]):

Vxé = —¢X, (8)
Q¢ = 2ng, ©)
(Vx)Y = R(¢, X)Y,

where Q and R denote the Ricci operator and the Riemann curvature tensor of g, respectively.
A contact metric manifold is said to be Sasakian if it satisfies

(Vxo)Y =g(X,Y)E —n(Y)X. (10)
On a Sasakian manifold the curvature tensor satisfies
R(X,Y)G =n(V)X —n(X)Y. (11)

Also, the contact metric structure on M is said to be Sasakian if the almost Kaehler structure on
the metric cone (M x RT, rzg + dr?) over M is Kaehler [2]. A Sasakian manifold is K-contact
but the converse is true only in dimension 3. For more details see [2] and [5].

2 m-quasi *-Einstein metric and Sasakian manifolds

In this section, we consider Sasakian metric satisfying m-quasi *-Einstein metric. To prove
our results we require the following lemma.

Lemma 1. Let (M, g, m, A) be a gradient m-quasi *-Einstein manifold. If g represents a Sasakian
metric, then

R(X,Y)Df = (VyQ)X - (VxQ)Y + ~F =D yvpx - (xpv)

+ %{(Xf)QY — (YHQX + (YA)n(X)E — (Xf)n(Y)E}
+28(X, 9Y)G —n(Y)9X +1(X) @Y

(12)

and

mT—ls(Y,Df):%(Yr)+2n(}\+(2n—1))+1—r

- n--

(CIn(Y). (13)

Proof. In [11], A. Ghosh and D.S. Patra find the expression of *-Ricci tensor, which is of the
form

S*(X,Y) = S(X,Y) — (21 — D)g(X,Y) — y(X)y(Y). (14)
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Making use of the above equation in (5), we obtain

S—l—Hessf—%df@df:(}H—(Zn—l))g—l—ﬂ@n. (15)

Here, we note that equation (15) may be exhibited as

VyDf +QY — g(¥,Df) = (A + (21~ )Y + (V)& (16)

By straightforward computations, using the well-known expression of the curvature tensor,
we obtain R(X,Y) = VxVy —VyVx — V x,y], and the repeated use of equation (16) gives the
equation (12). Next, contracting (12) over X we get the equation (13). O

Remark. The relation (15) is the m-quasi *-Einstein conditon on Sasakian manifolds. We ob-
serve that if f is constant then Sasakian manifolds becomes 17-Einstein.

Theorem 1. Let (M, g, m,A) be a gradient m-quasi *-Einstein manifold. If g represents a
Sasakian metric and m # 1, then M is -Einstein and f is constant.

Proof. Taking covariant differentiation of (9) and then making use of (8) we obtain

(VxQ)¢ = QX —2n¢X. (17)

We know that in a Sasakian manifold the Ricci operator Q and ¢ commute each other, i.e.
Q¢ = ¢Q. Thus, taking inner product of (12) with ¢ and then using (9) and (17) yields

S(R(X,Y)Df, &) = 28(X,QeY) —2(2n —1)g(X, ¢Y) + %{(Yf)ﬂ(x) - (Xf)m(¥)}.

Replacing Y by ¢ in the foregoing equation and recalling (11), we obtain

{& - 1}[(Xf) — (&f)m(X)] = 0.

m

Since, m and A are constant, we have either A/m # 1, or A/m = 1. We now discuss the two
cases separately.

Case (i). When A/m # 1, we have Df = ({f)¢. Differentiating this and making use of
(8), we obtain VxDf = X(¢f)& — (¢f)pX. Applying Poincare lemma (4> = 0) we see that
(X(E))mY) = (Y(Ef))n(X) +2(&f)dn(X,Y) = 0. Choosing X,Y L ¢ and noting that dy is
non-vanishing for any Sasakian manifold, we find ¢f = 0. This shows that f is constant.

Case (ii). When A/m = 1, we remember that for a Sasakian manifold ¢ is Killing, and
hence £:Q = 0. In view of (8) and (9), this is equivalent to V:Q = Q¢ — ¢Q. For a Sasakian
manifold, Q and ¢ commute each other (see [2]) and hence VzQ = 0. Now replacing Y by ¢ in
(12), recalling the last equation, (9), (11) and (17) we find

A

m

~1}xnE + 10K — (4 21— 1) - m)X — (X)) = 0.

m

QX — (21— 1)gX + {

Taking inner product of this equation with Y and by virtue of A /m = 1, one immediately finds

§(Q9x — 21~ 1gx,Y) + Lg(ax — 2n - 1x — y(x)8,1) =0
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Anti-symmetrizing the foregoing equation yields (Q¢ + ¢Q)X = 2(2n — 1)¢X for all vector
fields X. As Qp = ¢Q we have QpX = (2n — 1)pX. Replacing X by ¢X and making use of
last equation of (6), it follows that

QX = (2n — 1)X + n(X)Z. (18)

This shows that M is 7-Einstein with constant scalar curvature r = 4n2. Since M is 5-Einstein
and A/m = 1, making use of these in (13) yeilds m{Df — (f){} = 0. Since m # 0, we have
Df — (¢f)¢ = 0. We conclude that f is constant. O

By virtue of (18) and (14), it follows that M is *-Ricci flat. From this we state the following
corollary.

Corollary. Let (M, g, m,\) be a gradient m-quasi *-Einstein manifold. If g represents a Sasa-
kian metric and m # 1, then *-Ricci tensor vanishes and f is constant.

Now we consider a Sasakian manifold with conformal m-quasi-*-Einstein metric and we
prove the following theorem.

Theorem 2. Let (M, ¢,¢,1,8) be a Sasakian manifold. If g represents an m-quasi *-Einstein
metric with V as a conformal vector field, then V is Killing and M is n-Einstein.

Proof. In view of (14), it follows from (4) that
1 1

S(X,Y) + 5 (Evg)(X,Y) = —VIX)VI(Y) = {A+ (2n = D)}(X,Y) + 5 (X)n(Y).  (19)
Since V is conformal and hence there exists a smooth function ¢ such that (£y¢)(X,Y) =
2(VxV,Y)+g(VyV,X) = 20¢(X,Y). Therefore, equation (19) reduces to

1
S(X,¥) = {4+ (21— 1) — 03X, Y) +y(X)(¥) + VXV (V). (20)
Replacing X by ¢X in the above equation, we get
1
S(9X,Y) = {A+ (20— 1)~ o}g(gX, V) + - VE(pX)V(Y).

Again replacing Y by ¢Y in (20), we obtain

S(X,9Y) ={A+2n—1) —c}g(X, 9Y) + %Vb(X)Vb(goY).

Adding the last two equations and keeping in mind that in Sasakian manifold Q and ¢ com-
mute, we find that

LV X)) + VIOV (gY)} =0,

Substituting X = ¢V and Y = ¢V, the foregoing equation entails that ¢V = 0. Operating this
by ¢ shows that V = (V)¢ = pé, where p = 1(V). Differentiating this and making use of (8)
yields VxV = (Xp)¢ — pgX. We know that V is conformal, and therefore

(£vg)(X,Y) = g(VxV,Y) +g(VyV, X) = (Xp)n(Y) + (Yo)y (Y). (21)

Choosing X, Y orthogonal to ¢, the foregoing equation gives £y¢ = 0. This shows that V

is Killing. Thus, (21) yields (Xp)n(Y) + (Yp)n(Y) = 0. Putting Y = ¢ in this equation and
proceeding as in case (i) of Theorem 1 we easily conclude that p = #(V) is constant. Mak-
ing use of this in (20) takes the form S(X,Y) = {A + (2n —1)}g(X,Y) + {0*/m + 1}n(X)5(Y).
Finally, replacing X by ¢?X in the last equation and recalling (9) implies the equation
S(X,Y)={A+ (2n—1)}g(X,Y) + (1= A)5(X)y(Y) and hence p? = —Am. O
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If S* satisfies the relation S*(X,Y) = ag(X,Y) + pn(X)n(Y) for a, B € R, then M is said to
be a *-77-Einstein almost contact metric manifold. If weset X =Y = ¢, wefind a + = 0 so
thata = —p.

Let M be a *-y#-Einstein K-contact manifold with V = p¢. Differentiating this along X and
using (8), we obtain VxV = (Xp)¢ — p¢X. This together with *-y-Einstein imply

1 1
S*(X,Y) 4 ~g(X,Y) —

5 VE(X)VE(Y)

m

= ag(X,Y) — ag (X)(¥) + 3 {(Xp)(Y) + (Yp)y(X)} ~

m

2
7 (X)n(Y).

If we choose p? = —ma, where a > 0, then it is easily see that M admits an m-quasi *-Einstein
metric with A = a. Thus, we say that any *-#-Einstein K-contact manifold satisfies the m-quasi
x-Einstein condition with V = p¢, where p? = —ma and a > 0. Next, suppose that M admits
an m-quasi x-Einstein metric with V' = p¢, where p is a smooth function. Then (4) reduces to

2
SH(X,Y) + %{(XP)’?(Y) +(Y(X)} = 0n(v) = Ag(x,Y).

m
Replacing Y = ¢ in the last equation and making use of $*(X, ¢) = 0, we obtain

2
S(Xp) + @0} = {£ + 4 }n(x).

Again, taking X = ¢ the foregoing equation gives (&o) = p?/m + A. Hence, we have Dp =
(Cp)¢. Proceeding as in the case (i) of Theorem 1 we easily see that {p = 0. This shows that p
is constant and p> = —Am. Consequently, S*(X,Y) = Ag(¢X, ¢Y). Thus, we have proved the
following proposition.

Proposition. Let (M, ¢,,1,8) be a K-contact manifold. Then M satisfies the m-quasi *-Ein-
stein condition if it is x-nj-Einstein and V = p&, where p> = —ma and « > 0. Moreover, M
is x-n7-Einstein if it satisties the m-quasi *-Einstein condition with V' = p¢ for some smooth
function p.

Example. Define (&, 1, ¢,g) on the Euclidean space M = R3 in the following way:

0 P) P) P)
CZ@’ n = ydx — xdy + dz, 9”(&):@*’(@'
2
+1 —xy y
0 ) 0 ) y ;
qo(@)_yi_%’ 9(5;) =0 (81']‘)(;@ x:cl 1x)

It is not difficult to verify that the structure (, 1, ¢,g) is an almost contact Riemannian struc-
ture. Recalling¥ = g(-, ¢-), we find ¥ = —2dx A dy. Thus, it follows that ¥ = dy and so
M is a contact Riemannian manifold. Now, we employ Koszul’s formula in order to deduce
Levi-Civita connection V as given below:

d 9 d d d d
Vﬁa = —2]/@ — nyg, Va%@ = —2x$ +2xyE,
0 ¢, 9 _,9,.,9 (2 29 9 _g,0_90 0
Vagy = Vi Yo Ty T Ve Van = Vag T Ve @
9 d 3 0 d
Vagz=Viax~ oy Yoz Vag =0
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We use the equation (22) to check that (10) holds and so the defined structure is Sasakian.
Further use of the equation (22) gives:

(2, 2)2 - <2 y2 R(Z, )2~ %yl
ox'dy/dz T ox yay' ox'dz/ay T ox Yoz’

9 avo 8, 9 avo 9,
R(a,g)a—ya—(y +1)a , R(@,g)@ —x@—(x —I—l)a ,

9 9o 9 ., .9 2 9 av9 9 9

0 d\d 0 0 0 0d\ d 0 0
R(55:)3: = 5x Vo R(3, —)a—y@”y@

0 d\ 0 0 d
R(==, — )= = (x> =3)=— — +4y—.
(5% 8y> 5y ~ ¥ T8 TG, TG,
We use the preceding expression of curvature tensor to find the Ricci tensor as given below:

2y -2 —2xy 2y
(Sij) = | —2xy 2x2 -2 —2x|.
2y —2x 2
Now it is not hard to verify that S = —2g + 4y ® 1. By virtue of this, (14) and definition of

x-Ricci tensor, one can easily tind S* = —3g + 37 ® 1. Hence, if we take V = 3v/m /3¢, then M
admits an m-quasi-+-Einstein metric with A = —3.

3 m-quasi *-Einstein metric and (x, p#)-contact manifolds

In [3], D.E. Blair et al. introduced and studied a new type of contact metric manifold known
as a (x, p)-contact manifold. Later on, E. Boeckx [4] classified these manifolds completely. A
contact metric manifold (M, ¢, {, 7, g) is said to be (k, u)-space if the curvature tensor satisfies
R(X, V)¢ = x{n(YV)X —n(X)Y} + p{n(Y)hX — n(X)hY} (23)
for all vector fields X,Y on M and for some real numbers (x, #). This type of space arises
through a D-homothetic deformation (see [23]) to a contact metric manifold which satisfies
R(X,Y)¢ = 0. The class of (x, t)-spaces covers Sasakian manifolds (for x = 1) and the trivial
sphere bundle E"*! x §"(4) (for k = u = 0). There exist examples of non-Sasakian (x, jt)-
contact metric manifolds. For instance, the unit tangent bundles of Riemannian manifolds of
constant curvature ¥ # 1. Since a D-homothetic deformation preserves (k, u)-contact struc-
tures, one can construct lot of examples of («, y)-contact structures (see [3]). The following
formulas are also valid for a non-Sasakian («, yt)-contact manifolds [3]:

QX =[2(n—1) =nu]X + [2(n = 1) + plhX + [2(1 = n) + n(2x + p)|n(X)¢, QG = 2n«¢,

W=x-1)¢* <1, (24)
equality holds when « = 1 (equivalently, & = 0), i.e. M is Sasakian. For the non-Sasakian case,
i.e. k < 1, the (x, u)-nullity condition determines the curvature of M completely. In view of
this, E. Boeckx [4] proved that a non-Sasakian (x, 4 )-contact manifold is locally homogeneous
and hence analytic. Moreover, the constant scalar curvature r of such structures is given by

r=2n2(n—1)4+x—np),

which is constant.

Now we prepare the following result for later use.
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Lemma 2. Let (M, ¢,¢,1,8) be a non-Sasakian (k, u)-contact manifold. If § represents an
m-quasi *-Einstein metric, then

AR (v )X — (XYY + - (XF0E - (n(X02) 5

—28(X, 9Y)¢ +n(Y) (X + ¢hX) — n(X)(¢Y + @hY).

R(X,Y)Df =

Proof. In [11], A. Ghosh and D.S. Patra obtain the expression of *-Ricci tensor in non-Sasakian
(x, u)-contact manifolds, which is of the form S*(X,Y) = (nu +x){—g(X,Y) + n(X)n(Y)}.
By virtue of this, equation (5) takes the form

Hessf—%df@df:(A+(n]/t~|—x))g—17®17.

The above equation can be exhibited as

1
m

VyDf = —(Yf)Df + (A + (np+x))Y —n(Y)E. (26)

By a straightforward computations, using the well-known expression of the curvature tensor
R(X,Y) = VxVy = VyVx —Vixy,
and the repeated use of equation (26) gives equation (25). O

Theorem 3. Let (M, ¢, ¢, 1, ) be a non-Sasakian (x, u)-contact manifold. Suppose there exists
a gradient m-quasi *-Einstein structure (g, f, m) associated with the metric §. Then either it is
N (x)-contact metric manifold or it is *-Einstein.

Proof. Taking scalar product of (25) with ¢ and then replacing Y by &, we obtain

Adnuy+x—1
m

8(R(X,¢)Df,¢) = {(€Hn(X) = (Xf)}- (27)

Recalling (23), it follows that
§(R(X,4)¢, Df) = —=g(R(X,4)Df,5) = «{(Cf)n(X) — (Xf)} — ug(hX, Df).
Making use of last equation in (27) we have
hDf = o{Df - (f)¢}, (28)

where 0 = (A +nu +x —1 —mx)/(mu) and clearly this is constant. Differentiating (28) along
an arbitrary vector field X and taking into account (7), (26) and (28), we find

(Vxh)Df = = (Xf)(Ef)E + (A +npu+x)hX
= o{(A+np+ )X = 7(X)8 = (X(Gf))E + (5f)(¢X + ¢hX)}

From (26) it follows that

(29)

2
§(VeDf,8) = %—l—()\—l—nu—l—x—l).
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By definition, we have (¢, Df) = {f. Taking covariant differentiation of this along ¢ and
noting that V¢ = 0 (follows from (7)), we obtain ¢(VDf,¢) = ¢(¢f). Hence,

(Zf)?

§(§f)=7+()t~l—ny~l—1<—1). (30)

On the other hand, we note that for any contact metric manifolds we have [2]
Veh = ¢ — oh* — gl (31)

where [ = R(-,&)Z. From (23) it follows that | = —x¢? + uh. Making use of this and (24) in (31)
we at once obtain Vsh = phg. Replacing X by ¢ in (29), using the last equation and (30), one
immediately finds yhDf = 0. This implies either (i) p = 0, or (ii) p # 0.

Case (i). If p = 0, then from (23) it follows that R(X,Y)¢ = x{n(Y)X —n(X)Y}, ie. ¢
belongs to x-nullity distribution. This shows M is a N(k)-contact metric manifold.

Case (ii). Suppose u # 0. In this case, we have hDf = 0. Operating the preceding equa-
tion by h, recalling (24), it follows that (x — 1)p?Df = 0. Since M is non-Sasakian, we have
Df = (¢f)¢. Differentiating this along an arbitrary vector field X together with (7) entails
that VxDf = X(¢f)¢ — (¢f) (X + ¢hX). Since g(VxDf,Y) = g(VyDf, X), the last equation
shows that (X(¢f))n(X) — (Y(&f))n(Y) + (&f)dn(X,Y) = 0. Replacing X by ¢X and Y by
@Y and since dy is non-zero for any contact metric structure it follows that ({f) = 0. Hence
Df =0, i.e. f is constant and consequently (5) implies that M is *-Einstein. O
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MerToro AaHOI CTaTTi € BBEACHHSI Ta AOCAIAKEHHS XapaKTepPUCTUK 1-KBasi-*-AJHINTalHiBChKOL
MeTPUKM Ha KOHTaKTHMX piMaHOBMX MHOrosuaax. CriepIiry mMu AOBOAMMO, 110 sIKIIo CacaksHOBII
MHOTOBYMA Ma€ IpaAi€HT m-KBasi-+-AVMHINTaiHIBCbKOI MeTpUKY, TO M € -AVHIITalHIBCEKIM, a f €
KOHCTaHTOI0. AaAi My okasyemo, mo y CacaksTHOBOMY MHOTOBMA], SIKIIIO g TIPeACTaBASIE M-KBasi-
*-AVHIITalHiBCbKY MEeTPUKY 3 KOH(POpMHMM BeKTOpHMM 1oreM V, To V e Kianinrosum, a M —
1-AvtHIITalHIBchkM. Haperti, My A0BOAMMO, 1110 stKITIO He-CacakstHOBMIA (K, ) -KOHTaKTHMIA MHO-
TOBUA AOIIYCKAE IPAAIEHT 1M-KBasi-*-AMHINTAHIBCBKOI METPUKI, TO BiH € N (K )-KOHTaKTHIIT METPU-
yHMIT ab0 *-AVHINTaMTHIBCbKII MHOTOBYMA,

Kntouosi cnoea i ¢ppasu: x-Piudi coaiToH, m-KBasi-+-AjHITaiHiBcbka MeTpuka, CacaksHOBMI
MHOTOBMA, (¥, })-KOHTaKTHIIA MHOTOBUA.



