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m-quasi-∗-Einstein contact metric manifolds

Kumara H.A.1, Venkatesha V.1, , Naik D.M.2

The goal of this article is to introduce and study the characterstics of m-quasi-∗-Einstein metric

on contact Riemannian manifolds. First, we prove that if a Sasakian manifold admits a gradient

m-quasi-∗-Einstein metric, then M is η-Einstein and f is constant. Next, we show that in a Sasakian

manifold if g represents an m-quasi-∗-Einstein metric with a conformal vector field V, then V is

Killing and M is η-Einstein. Finally, we prove that if a non-Sasakian (κ, µ)-contact manifold admits

a gradient m-quasi-∗-Einstein metric, then it is N(κ)-contact metric manifold or a ∗-Einstein.
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Introduction

Let M be an almost contact metric manifold. Corresponding to Ricci tensor, S. Tachibana

[22] introduced the idea of ∗-Ricci tensor. In [13], T. Hamada apply these ideas to real hyper-

surfaces in complex spaceforms. The ∗-Ricci tensor S∗ is defined by

S∗(X, Y) =
1

2
trace{ϕ ◦ R(X, ϕY)}

for all vector fields X, Y on M and ϕ is a (1, 1)-tensor field. If ∗-Ricci tensor is a constant

multiple of g(X, Y) for all X, Y ⊥ ξ, then M is said to be a ∗-Einstein manifold. T. Hamada gave

a complete classification of ∗-Einstein hypersurfaces, and further T.A. Ivey and P.J. Ryan [15]

updated and refined the work of T. Hamada [13]. Further, the idea of ∗-Ricci tensor on contact

Riemannian manifolds are considered in [14].

As the generalization of ∗-Einstein metric, G. Kaimakamis and K. Panagiotidou [17] in-

troduced the so-called ∗-Ricci soliton where they essentialy modified the definition of Ricci

soliton by replacing the Ricci tensor S in Ricci soliton condition with the ∗-Ricci tensor S∗.

УДК 514.76
2010 Mathematics Subject Classification: 53C25, 53C15, 53D10.

V. Venkatesha and H.A. Kumara are thankful to Department of Science and Technology, New Delhi for

financial assistance to the Department of Mathematics, Kuvempu University under the FIST program (Ref. No.

SR/FST/MS-I/2018-23(C))

© Kumara H.A., Venkatesha V., Naik D.M., 2022



62 Kumara H.A., Venkatesha V., Naik D.M.

Definition. A Riemannian metric g on M is called a ∗-Ricci soliton if there exist a constant λ

and a vector field V such that

1

2
£V g + S∗ = λg (1)

for all vector fields X, Y on M, where £V denotes the Lie-derivative in the direction of V.

If the soliton constant λ in the defining condition (1) is a smooth function, then we say that

it is an almost ∗-Ricci soliton. Moreover, if the vector field V is a gradient of a smooth function

f , then we say that it is gradient almost ∗-Ricci soliton. Note that a ∗-Ricci soliton is trivial if

the vector field V is Killing, and in this case the manifold becomes ∗-Einstein.

Einstein metrics and their generalizations are important both in mathematics and physics.

A natural extension of the Ricci tensor is the m-Bakry-Emery Ricci tensor

Sm
f = S + Hess f − 1

m
d f ⊗ d f ,

namely one puts 0 < m ≤ ∞, f is smooth function on M and Hess f stands for the Hessian

form. Instead of a gradient of a smooth function f by a vector field V, m-Bakry-Emery Ricci

tensor was extended by A. Barros and E. Ribeiro in [1] and M. Limoncu in [18] for an arbitrary

vector field V on M as follows

Sm
f = S +

1

2
£V g − 1

m
Vb ⊗ Vb, (2)

where Vb is the canonical 1-form associated to the vector field V. With this setting (M, g, V, m)

is called an m-quasi-Einstein metric, if there exist a vector field V and a constant λ on M such

that

Sm
f = S +

1

2
£V g − 1

m
Vb ⊗ Vb = λg. (3)

It is interesting to note that equation (3) reduces to the so-called Ricci solitons when

m = ∞, and hence, it is considered as a direct generalization of Ricci soliton. The study of

m-quasi Einstein metric in the framework of contact metric manifolds are considered when

V is a gradient of a smooth function f on M, see [8–10]. Very recently, in the framework of

contact metric manifolds equation (3) has been studied by A. Ghosh in [12].

Almost contact Riemannian manifolds can be viewed as an odd-dimensional analogue of

almost Hermitian manifolds. So few authors in the earlier days called them by the name almost

co-Hermitian manifolds (see, for example, [16]). Contact Riemannian manifolds, special classes

of almost contact Riemannian manifolds, have recently been increasing interest in differential

geometry. During the last few years, conformal vector fields, ∗-Ricci solitons, gradient almost

∗-Ricci solitons, and almost ∗-Ricci solitons are studied by several authors on almost contact

Riemannian manifold. The studies of ∗-Ricci solitons on almost contact Riemannian manifolds

were first initiated by A. Ghosh and D.S. Patra [11]. In the paper, the author showed that a

complete Sasakian metric is an almost gradient ∗-Ricci soliton, then it is positive-Sasakian and

isometric to a unit sphere S2n+1. Next, P. Majhi et al. [19] studied ∗-Ricci soliton on Sasakian

3-manifolds. Further, V. Venkatesha et al. [24] and X. Dai et al. [7] considered the almost ∗-Ricci

soliton on Kenmotsu manifolds and (κ, µ)′-almost Kenmotsu manifolds. Recently, D.M. Naik
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et al. [20] and X. Dai [6] studied the ∗-Ricci solitons in the backkground of cosymplectic man-

ifolds and (κ, µ)-almost cosymplectic manifolds. Y. Wang [26] considered the ∗-Ricci solitons

on contact metric 3-manifolds. In this setting, it is worth to mention that in the background

of paracontact geometry, the authors in [21,25] studied ∗-Ricci solitons on paraSasakian mani-

folds and para Kenmotsu manifolds respectively.

Motivated by the above cited works about ∗-Ricci solitons, in this work we essentially mod-

ified the m-Bakry-Emery Ricci tensor by replacing the Ricci tensor S in the fundamental equa-

tion (2) with the ∗-Ricci tensor S∗, called m-Bakry-Emery ∗-Ricci tensor

S∗m
f = S∗ +

1

2
£V g − 1

m
Vb ⊗ Vb.

In this setting, (M, g) is called an m-quasi ∗-Einstein metric, if there exist a vector V, real

constant λ and m, 0 < m ≤ ∞, such that

S∗ +
1

2
£V g − 1

m
Vb ⊗ Vb = λg. (4)

The above equation is very much interesting when m = ∞. In this case, it is exactly the ∗-Ricci

soliton and hence, it is considered as a direct generalization of ∗-Ricci solitons. If the vector

field V is a gradient of a smooth function f , then we say that it is gradient m-quasi ∗-Einstein

metric and in such a case (4) becomes

S∗ + Hess f − 1

m
d f ⊗ d f = λg. (5)

This paper focuses on the study of contact metric manifolds, which admits a m-quasi

∗-Einstein metric. The paper is organized as follows. In Section 2, preliminaries relations

and basic results for contact metric manifolds are presented. In Section 3, we show that if there

is a gradient m-quasi ∗-Einstein structure (g, f , m) associated with the Sasakian metric g, then

M is η-Einstein and f is constant. Next, we proved that in a Sasakian manifold if g repre-

sents a m-quasi ∗-Einstein metric with V conformal, then V is Killing and M is η-Einstein. We

study gradient m-quasi ∗-Einstein metric on non-Sasakian (κ, µ)-contact manifold and prove

that either it is N(κ)-contact metric manifold or it is ∗-Einstein.

1 Preliminaries

First, we look into the basic definitions and formulas of contact metric manifolds. A (2n+1)-

dimensional smooth manifold M is said to be contact if it admits a global 1-form η such that

η ∧ (dη)n 6= 0 on M. This 1-form is called a contact 1-form. For a contact 1-form η, there exists

a unique vector field ξ such that dη(ξ, X) = 0 and η(ξ) = 1. Polarizing dη on the contact

sub-bundle D (defined by η = 0), we obtain a Riemannian metric g and a (1, 1)-tensor field ϕ

such that

dη(X, Y) = Ψ(X, Y) = g(X, ϕY), η(X) = g(X, ξ), ϕ2X = −X + η(X)ξ, (6)

for all X, Y ∈ TM. From these equations one can also deduce that ϕξ = 0, η ◦ ϕ = 0,

g(ϕX, ϕY) = g(X, Y) − η(X)η(Y).

The structure (ϕ, ξ, η, g) on M is known as a contact metric structure and the metric g is

called an associated metric. A Riemannian manifold M together with the structure (ϕ, ξ, η, g)
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is said to be a contact metric manifold and we denote it by (M, ϕ, ξ, η, g). On a contact metric

manifold, the following identities are known

∇Xξ = −ϕX − ϕhX, hϕ + ϕh = 0 (7)

for any vector fields X, Y on M and ∇ denotes the operator of covariant differentiation of g.

If the vector field ξ is Killing (equivalently, h = 0) with respect to g, then the contact metric

manifold M is said to be K-contact. On a K-contact (Sasakian) manifold the following formulas

are known (see [2]):

∇Xξ = −ϕX, (8)

Qξ = 2nξ, (9)

(∇X ϕ)Y = R(ξ, X)Y,

where Q and R denote the Ricci operator and the Riemann curvature tensor of g, respectively.

A contact metric manifold is said to be Sasakian if it satisfies

(∇X ϕ)Y = g(X, Y)ξ − η(Y)X. (10)

On a Sasakian manifold the curvature tensor satisfies

R(X, Y)ξ = η(Y)X − η(X)Y. (11)

Also, the contact metric structure on M is said to be Sasakian if the almost Kaehler structure on

the metric cone (M × R+, r2g + dr2) over M is Kaehler [2]. A Sasakian manifold is K-contact

but the converse is true only in dimension 3. For more details see [2] and [5].

2 m-quasi ∗-Einstein metric and Sasakian manifolds

In this section, we consider Sasakian metric satisfying m-quasi ∗-Einstein metric. To prove

our results we require the following lemma.

Lemma 1. Let (M, g, m, λ) be a gradient m-quasi ∗-Einstein manifold. If g represents a Sasakian

metric, then

R(X, Y)D f = (∇YQ)X − (∇XQ)Y +
λ + (2n − 1)

m
{(Y f )X − (X f )Y}

+
1

m
{(X f )QY − (Y f )QX + (Y f )η(X)ξ − (X f )η(Y)ξ}

+ 2g(X, ϕY)ξ − η(Y)ϕX + η(X)ϕY

(12)

and

m − 1

m
S(Y, D f ) =

1

2
(Yr) +

2n(λ + (2n − 1)) + 1 − r

m
(Y f ) − 1

m
(ξ f )η(Y). (13)

Proof. In [11], A. Ghosh and D.S. Patra find the expression of ∗-Ricci tensor, which is of the

form

S∗(X, Y) = S(X, Y) − (2n − 1)g(X, Y) − η(X)η(Y). (14)
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Making use of the above equation in (5), we obtain

S + Hess f − 1

m
d f ⊗ d f = (λ + (2n − 1))g + η ⊗ η. (15)

Here, we note that equation (15) may be exhibited as

∇YD f + QY − 1

m
g(Y, D f ) = (λ + (2n − 1))Y + η(Y)ξ. (16)

By straightforward computations, using the well-known expression of the curvature tensor,

we obtain R(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y], and the repeated use of equation (16) gives the

equation (12). Next, contracting (12) over X we get the equation (13).

Remark. The relation (15) is the m-quasi ∗-Einstein conditon on Sasakian manifolds. We ob-

serve that if f is constant then Sasakian manifolds becomes η-Einstein.

Theorem 1. Let (M, g, m, λ) be a gradient m-quasi ∗-Einstein manifold. If g represents a

Sasakian metric and m 6= 1, then M is η-Einstein and f is constant.

Proof. Taking covariant differentiation of (9) and then making use of (8) we obtain

(∇XQ)ξ = QϕX − 2nϕX. (17)

We know that in a Sasakian manifold the Ricci operator Q and ϕ commute each other, i.e.

Qϕ = ϕQ. Thus, taking inner product of (12) with ξ and then using (9) and (17) yields

g(R(X, Y)D f , ξ) = 2g(X, QϕY) − 2(2n − 1)g(X, ϕY) +
λ

m
{(Y f )η(X) − (X f )η(Y)}.

Replacing Y by ξ in the foregoing equation and recalling (11), we obtain

{ λ

m
− 1

}

[(X f ) − (ξ f )η(X)] = 0.

Since, m and λ are constant, we have either λ/m 6= 1, or λ/m = 1. We now discuss the two

cases separately.

Case (i). When λ/m 6= 1, we have D f = (ξ f )ξ. Differentiating this and making use of

(8), we obtain ∇XD f = X(ξ f )ξ − (ξ f )ϕX. Applying Poincare lemma (d2 = 0) we see that

(X(ξ f ))η(Y) − (Y(ξ f ))η(X) + 2(ξ f )dη(X, Y) = 0. Choosing X, Y ⊥ ξ and noting that dη is

non-vanishing for any Sasakian manifold, we find ξ f = 0. This shows that f is constant.

Case (ii). When λ/m = 1, we remember that for a Sasakian manifold ξ is Killing, and

hence £ξ Q = 0. In view of (8) and (9), this is equivalent to ∇ξ Q = Qϕ − ϕQ. For a Sasakian

manifold, Q and ϕ commute each other (see [2]) and hence ∇ξ Q = 0. Now replacing Y by ξ in

(12), recalling the last equation, (9), (11) and (17) we find

QϕX − (2n − 1)ϕX +
{ λ

m
− 1

}

(X f )ξ +
(ξ f )

m
{QX − (λ + (2n − 1)− m)X − η(X)ξ} = 0.

Taking inner product of this equation with Y and by virtue of λ/m = 1, one immediately finds

g(QϕX − (2n − 1)ϕX, Y) +
(ξ f )

m
g(QX − (2n − 1)X − η(X)ξ, Y) = 0.
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Anti-symmetrizing the foregoing equation yields (Qϕ + ϕQ)X = 2(2n − 1)ϕX for all vector

fields X. As Qϕ = ϕQ we have QϕX = (2n − 1)ϕX. Replacing X by ϕX and making use of

last equation of (6), it follows that

QX = (2n − 1)X + η(X)ξ. (18)

This shows that M is η-Einstein with constant scalar curvature r = 4n2. Since M is η-Einstein

and λ/m = 1, making use of these in (13) yeilds m{D f − (ξ f )ξ} = 0. Since m 6= 0, we have

D f − (ξ f )ξ = 0. We conclude that f is constant.

By virtue of (18) and (14), it follows that M is ∗-Ricci flat. From this we state the following

corollary.

Corollary. Let (M, g, m, λ) be a gradient m-quasi ∗-Einstein manifold. If g represents a Sasa-

kian metric and m 6= 1, then ∗-Ricci tensor vanishes and f is constant.

Now we consider a Sasakian manifold with conformal m-quasi-∗-Einstein metric and we

prove the following theorem.

Theorem 2. Let (M, ϕ, ξ, η, g) be a Sasakian manifold. If g represents an m-quasi ∗-Einstein

metric with V as a conformal vector field, then V is Killing and M is η-Einstein.

Proof. In view of (14), it follows from (4) that

S(X, Y) +
1

2
(£V g)(X, Y) − 1

m
Vb(X)Vb(Y) = {λ + (2n − 1)}g(X, Y) + η(X)η(Y). (19)

Since V is conformal and hence there exists a smooth function σ such that (£V g)(X, Y) =

g(∇XV, Y) + g(∇YV, X) = 2σg(X, Y). Therefore, equation (19) reduces to

S(X, Y) = {λ + (2n − 1)− σ}g(X, Y) + η(X)η(Y) +
1

m
Vb(X)Vb(Y). (20)

Replacing X by ϕX in the above equation, we get

S(ϕX, Y) = {λ + (2n − 1)− σ}g(ϕX, Y) +
1

m
Vb(ϕX)Vb(Y).

Again replacing Y by ϕY in (20), we obtain

S(X, ϕY) = {λ + (2n − 1)− σ}g(X, ϕY) +
1

m
Vb(X)Vb(ϕY).

Adding the last two equations and keeping in mind that in Sasakian manifold Q and ϕ com-

mute, we find that

1

m
{Vb(ϕX)Vb(Y) + Vb(X)Vb(ϕY)} = 0.

Substituting X = ϕV and Y = ϕV, the foregoing equation entails that ϕV = 0. Operating this

by ϕ shows that V = η(V)ξ = ρξ, where ρ = η(V). Differentiating this and making use of (8)

yields ∇XV = (Xρ)ξ − ρϕX. We know that V is conformal, and therefore

(£V g)(X, Y) = g(∇XV, Y) + g(∇YV, X) = (Xρ)η(Y) + (Yρ)η(Y). (21)

Choosing X, Y orthogonal to ξ, the foregoing equation gives £V g = 0. This shows that V

is Killing. Thus, (21) yields (Xρ)η(Y) + (Yρ)η(Y) = 0. Putting Y = ξ in this equation and

proceeding as in case (i) of Theorem 1 we easily conclude that ρ = η(V) is constant. Mak-

ing use of this in (20) takes the form S(X, Y) = {λ + (2n − 1)}g(X, Y) + {ρ2/m + 1}η(X)η(Y).

Finally, replacing X by ϕ2X in the last equation and recalling (9) implies the equation

S(X, Y) = {λ + (2n − 1)}g(X, Y) + (1 − λ)η(X)η(Y) and hence ρ2 = −λm.
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If S∗ satisfies the relation S∗(X, Y) = αg(X, Y) + βη(X)η(Y) for α, β ∈ R, then M is said to

be a ∗-η-Einstein almost contact metric manifold. If we set X = Y = ξ, we find α + β = 0 so

that α = −β.

Let M be a ∗-η-Einstein K-contact manifold with V = ρξ. Differentiating this along X and

using (8), we obtain ∇XV = (Xρ)ξ − ρϕX. This together with ∗-η-Einstein imply

S∗(X, Y) +
1

2
g(X, Y) − 1

m
Vb(X)Vb(Y)

= αg(X, Y) − αη(X)η(Y) +
1

2
{(Xρ)η(Y) + (Yρ)η(X)} − ρ2

m
η(X)η(Y).

If we choose ρ2 = −mα, where α > 0, then it is easily see that M admits an m-quasi ∗-Einstein

metric with λ = α. Thus, we say that any ∗-η-Einstein K-contact manifold satisfies the m-quasi

∗-Einstein condition with V = ρξ, where ρ2 = −mα and α > 0. Next, suppose that M admits

an m-quasi ∗-Einstein metric with V = ρξ, where ρ is a smooth function. Then (4) reduces to

S∗(X, Y) +
1

2
{(Xρ)η(Y) + (Yρ)η(X)} − ρ2

m
η(X)η(Y) = λg(X, Y).

Replacing Y = ξ in the last equation and making use of S∗(X, ξ) = 0, we obtain

1

2
{(Xρ) + (ξρ)η(X)} =

{ρ2

m
+ λ

}

η(X).

Again, taking X = ξ the foregoing equation gives (ξρ) = ρ2/m + λ. Hence, we have Dρ =

(ξρ)ξ. Proceeding as in the case (i) of Theorem 1 we easily see that ξρ = 0. This shows that ρ

is constant and ρ2 = −λm. Consequently, S∗(X, Y) = λg(ϕX, ϕY). Thus, we have proved the

following proposition.

Proposition. Let (M, ϕ, ξ, η, g) be a K-contact manifold. Then M satisfies the m-quasi ∗-Ein-

stein condition if it is ∗-η-Einstein and V = ρξ, where ρ2 = −mα and α > 0. Moreover, M

is ∗-η-Einstein if it satisfies the m-quasi ∗-Einstein condition with V = ρξ for some smooth

function ρ.

Example. Define (ξ, η, ϕ, g) on the Euclidean space M = R3 in the following way:

ξ =
∂

∂z
, η = ydx − xdy + dz, ϕ

( ∂

∂x

)

=
∂

∂y
+ x

∂

∂z
,

ϕ
( ∂

∂y

)

= y
∂

∂z
− ∂

∂x
, ϕ

( ∂

∂z

)

= 0, (gij) =





y2 + 1 −xy y

−xy x2 + 1 −x

y −x 1



 .

It is not difficult to verify that the structure (ξ, η, ϕ, g) is an almost contact Riemannian struc-

ture. Recalling Ψ = g(·, ϕ·), we find Ψ = −2dx ∧ dy. Thus, it follows that Ψ = dη and so

M is a contact Riemannian manifold. Now, we employ Koszul’s formula in order to deduce

Levi-Civita connection ∇ as given below:

∇ ∂
∂x

∂

∂x
= −2y

∂

∂y
− 2xy

∂

∂z
, ∇ ∂

∂y

∂

∂y
= −2x

∂

∂x
+ 2xy

∂

∂z
,

∇ ∂
∂x

∂

∂y
= ∇ ∂

∂y

∂

∂x
= y

∂

∂x
+ x

∂

∂y
+ (x2 − y2)

∂

∂z
, ∇ ∂

∂y

∂

∂z
= ∇ ∂

∂z

∂

∂y
=

∂

∂x
− y

∂

∂z
,

∇ ∂
∂x

∂

∂z
= ∇ ∂

∂z

∂

∂x
= − ∂

∂y
− x

∂

∂z
, ∇ ∂

∂z

∂

∂z
= 0.

(22)
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We use the equation (22) to check that (10) holds and so the defined structure is Sasakian.

Further use of the equation (22) gives:

R
( ∂

∂x
,

∂

∂y

) ∂

∂z
= −x

∂

∂x
− y

∂

∂y
, R

( ∂

∂x
,

∂

∂z

) ∂

∂y
= −x

∂

∂x
− xy

∂

∂z
,

R
( ∂

∂x
,

∂

∂z

) ∂

∂x
= y

∂

∂x
− (y2 + 1)

∂

∂z
, R

( ∂

∂y
,

∂

∂z

) ∂

∂y
= −x

∂

∂y
− (x2 + 1)

∂

∂z
,

R
( ∂

∂x
,

∂

∂y

) ∂

∂x
= −xy

∂

∂x
− (y2 − 3)

∂

∂y
+ 4x

∂

∂z
, R

( ∂

∂y
,

∂

∂z

) ∂

∂z
=

∂

∂y
+ x

∂

∂z
,

R
( ∂

∂x
,

∂

∂z

) ∂

∂z
=

∂

∂x
− y

∂

∂z
, R

( ∂

∂y
,

∂

∂z

) ∂

∂x
= y

∂

∂y
+ xy

∂

∂z
,

R
( ∂

∂x
,

∂

∂y

) ∂

∂y
= (x2 − 3)

∂

∂x
+ xy

∂

∂y
+ 4y

∂

∂z
.

We use the preceding expression of curvature tensor to find the Ricci tensor as given below:

(Sij) =





2y2 − 2 −2xy 2y

−2xy 2x2 − 2 −2x

2y −2x 2



 .

Now it is not hard to verify that S = −2g + 4η ⊗ η. By virtue of this, (14) and definition of

∗-Ricci tensor, one can easily find S∗ = −3g + 3η ⊗ η. Hence, if we take V = 3
√

m/3ξ, then M

admits an m-quasi-∗-Einstein metric with λ = −3.

3 m-quasi ∗-Einstein metric and (κ, µ)-contact manifolds

In [3], D.E. Blair et al. introduced and studied a new type of contact metric manifold known

as a (κ, µ)-contact manifold. Later on, E. Boeckx [4] classified these manifolds completely. A

contact metric manifold (M, ϕ, ξ, η, g) is said to be (κ, µ)-space if the curvature tensor satisfies

R(X, Y)ξ = κ{η(Y)X − η(X)Y} + µ{η(Y)hX − η(X)hY} (23)

for all vector fields X, Y on M and for some real numbers (κ, µ). This type of space arises

through a D-homothetic deformation (see [23]) to a contact metric manifold which satisfies

R(X, Y)ξ = 0. The class of (κ, µ)-spaces covers Sasakian manifolds (for κ = 1) and the trivial

sphere bundle En+1 × Sn(4) (for κ = µ = 0). There exist examples of non-Sasakian (κ, µ)-

contact metric manifolds. For instance, the unit tangent bundles of Riemannian manifolds of

constant curvature κ 6= 1. Since a D-homothetic deformation preserves (κ, µ)-contact struc-

tures, one can construct lot of examples of (κ, µ)-contact structures (see [3]). The following

formulas are also valid for a non-Sasakian (κ, µ)-contact manifolds [3]:

QX = [2(n − 1)− nµ]X + [2(n − 1) + µ]hX + [2(1 − n) + n(2κ + µ)]η(X)ξ, Qξ = 2nκξ,

h2 = (κ − 1)ϕ2, κ < 1, (24)

equality holds when κ = 1 (equivalently, h = 0), i.e. M is Sasakian. For the non-Sasakian case,

i.e. κ < 1, the (κ, µ)-nullity condition determines the curvature of M completely. In view of

this, E. Boeckx [4] proved that a non-Sasakian (κ, µ)-contact manifold is locally homogeneous

and hence analytic. Moreover, the constant scalar curvature r of such structures is given by

r = 2n(2(n − 1) + κ − nµ),

which is constant.

Now we prepare the following result for later use.
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Lemma 2. Let (M, ϕ, ξ, η, g) be a non-Sasakian (κ, µ)-contact manifold. If g represents an

m-quasi ∗-Einstein metric, then

R(X, Y)D f =
λ + (nµ + κ)

m
{(Y f )X − (X f )Y} +

1

m
{(X f )η(Y)ξ − (Y f )η(X)ξ}

− 2g(X, ϕY)ξ + η(Y)(ϕX + ϕhX)− η(X)(ϕY + ϕhY).
(25)

Proof. In [11], A. Ghosh and D.S. Patra obtain the expression of ∗-Ricci tensor in non-Sasakian

(κ, µ)-contact manifolds, which is of the form S∗(X, Y) = (nµ + κ){−g(X, Y) + η(X)η(Y)}.

By virtue of this, equation (5) takes the form

Hess f − 1

m
d f ⊗ d f = (λ + (nµ + κ))g − η ⊗ η.

The above equation can be exhibited as

∇YD f =
1

m
(Y f )D f + (λ + (nµ + κ))Y − η(Y)ξ. (26)

By a straightforward computations, using the well-known expression of the curvature tensor

R(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y],

and the repeated use of equation (26) gives equation (25).

Theorem 3. Let (M, ϕ, ξ, η, g) be a non-Sasakian (κ, µ)-contact manifold. Suppose there exists

a gradient m-quasi ∗-Einstein structure (g, f , m) associated with the metric g. Then either it is

N(κ)-contact metric manifold or it is ∗-Einstein.

Proof. Taking scalar product of (25) with ξ and then replacing Y by ξ, we obtain

g(R(X, ξ)D f , ξ) =
λ + nµ + κ − 1

m
{(ξ f )η(X) − (X f )}. (27)

Recalling (23), it follows that

g(R(X, ξ)ξ, D f ) = −g(R(X, ξ)D f , ξ) = κ{(ξ f )η(X) − (X f )} − µg(hX, D f ).

Making use of last equation in (27) we have

hD f = σ{D f − (ξ f )ξ}, (28)

where σ = (λ + nµ + κ − 1 − mκ)/(mµ) and clearly this is constant. Differentiating (28) along

an arbitrary vector field X and taking into account (7), (26) and (28), we find

(∇Xh)D f − σ

m
(X f )(ξ f )ξ + (λ + nµ + κ)hX

= σ{(λ + nµ + κ)X − η(X)ξ − (X(ξ f ))ξ + (ξ f )(ϕX + ϕhX)}
(29)

From (26) it follows that

g(∇ξ D f , ξ) =
(ξ f )2

m
+ (λ + nµ + κ − 1).
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By definition, we have g(ξ, D f ) = ξ f . Taking covariant differentiation of this along ξ and

noting that ∇ξ ξ = 0 (follows from (7)), we obtain g(∇ξ D f , ξ) = ξ(ξ f ). Hence,

ξ(ξ f ) =
(ξ f )2

m
+ (λ + nµ + κ − 1). (30)

On the other hand, we note that for any contact metric manifolds we have [2]

∇ξ h = ϕ − ϕh2 − ϕl, (31)

where l = R(·, ξ)ξ. From (23) it follows that l = −κϕ2 + µh. Making use of this and (24) in (31)

we at once obtain ∇ξh = µhϕ. Replacing X by ξ in (29), using the last equation and (30), one

immediately finds µhD f = 0. This implies either (i) µ = 0, or (ii) µ 6= 0.

Case (i). If µ = 0, then from (23) it follows that R(X, Y)ξ = κ{η(Y)X − η(X)Y}, i.e. ξ

belongs to κ-nullity distribution. This shows M is a N(κ)-contact metric manifold.

Case (ii). Suppose µ 6= 0. In this case, we have hD f = 0. Operating the preceding equa-

tion by h, recalling (24), it follows that (κ − 1)ϕ2D f = 0. Since M is non-Sasakian, we have

D f = (ξ f )ξ. Differentiating this along an arbitrary vector field X together with (7) entails

that ∇XD f = X(ξ f )ξ − (ξ f )(ϕX + ϕhX). Since g(∇X D f , Y) = g(∇Y D f , X), the last equation

shows that (X(ξ f ))η(X) − (Y(ξ f ))η(Y) + (ξ f )dη(X, Y) = 0. Replacing X by ϕX and Y by

ϕY and since dη is non-zero for any contact metric structure it follows that (ξ f ) = 0. Hence

D f = 0, i.e. f is constant and consequently (5) implies that M is ∗-Einstein.
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Кумара Х.А., Венкатеша В., Найк Д.М. m-квазi-∗-Айнштайнiвськi контактнi метричнi многовиди

// Карпатськi матем. публ. — 2022. — Т.14, №1. — C. 61–71.

Метою даної статтi є введення та дослiдження характеристик m-квазi-∗-Айнштайнiвської

метрики на контактних рiманових многовидах. Спершу ми доводимо, що якщо Сасакяновий

многовид має градiєнт m-квазi-∗-Айнштайнiвської метрики, то M є η-Айнштайнiвським, а f є

константою. Далi ми показуємо, що у Сасакяновому многовидi, якщо g представляє m-квазi-

∗-Айнштайнiвську метрику з конформним векторним полем V, то V є Кiллiнговим, а M —

η-Айнштайнiвським. Нарештi, ми доводимо, що якщо не-Сасакяновий (κ, µ)-контактний мно-

говид допускає градiєнт m-квазi-∗-Айнштайнiвської метрики, то вiн є N(κ)-контактний метри-

чний або ∗-Айнштайнiвський многовид.

Ключовi слова i фрази: ∗-Рiччi солiтон, m-квазi-∗-Айнштайнiвська метрика, Сасакяновий

многовид, (κ, µ)-контактний многовид.


