References

  1. Ali F.A.M., Karim S.A.A., Saaban A., Hasan M.K., Ghaffar A., Nisar K.S., Baleanu D. Construction of cubic timmer triangular patches and its application in scattered data interpolation. Mathematics 2020, 8 (2), 1–46. doi:10.3390/math8020159
  2. Ashraf P., Nawaz B., Baleanu D., Nisar K.S., Ghaffar A., Khan M.A.A., Akram S. Analysis of geometric properties of ternary four-point rational interpolating subdivision scheme. Mathematics 2020, 8 (3), 1–19. doi:10.3390/math8030338
  3. Acar T., Agrawal P.N., Kumar A.S. On a Modification of \((p,q)\)-Szász-Mirakyan Operators. Complex Anal. Oper. Theory 2018, 12 (1), 155–167. doi:10.1007/s11785-016-0613-9
  4. Ilarslan H.G.I., Acar T. Approximation by bivariate \((p,q)\)-Baskakov-Kantorovich operators. Georgian Math. J. 2016, 25 (3), 397–407. doi:10.1515/gmj-2016-0057
  5. Acar T., Aral A., Mohiuddine S.A. Approximation by Bivariate \((p,q)\)-Bernstein-Kantorovich Operators. Iran. J. Sci. Technol. Trans. A Sci. 2016, 42, 655–662. doi:10.1007/s40995-016-0045-4
  6. Sharma H., Maurya R., Gupta C. Approximation Properties of Kantorovich Type Modifications of \((p,q)\)-Meyer-König-Zeller Operators. Constr. Math. Anal. 2018, 1 (1), 58–72. doi:10.33205/cma.436071
  7. Mursaleen M., Nasiruzzaman M. Approximation of Modified Jakimovski-Leviatan-Beta Type Operators. Constr. Math. Anal. 2018, 1 (2), 88–98. doi:10.33205/cma.453284
  8. Acar T. \((p,q)\)-Generalization of Szász-Mirakyan operators. Math. Methods Appl. Sci. 2016, 39 (10), 2685–2695. doi:10.1002/mma.3721
  9. Acar T., Aral A., Mohiuddine S.A. On Kantorovich modification of \((p, q)\)-Baskakov operators. J. Inequal. Appl. 2016, 2016 (98), 1–14. doi:10.1186/s13660-016-1045-9
  10. Acar T., Aral A., Mohiuddine S.A. On Kantorovich modification of \((p, q)\)-Bernstein operators. Iran. J. Sci. Technol. Trans. A Sci. 2017, 42 (3), 1459–1464. doi:10.1007/s40995-017-0154-8
  11. Acar T., Aral A., Mursaleen M. Approximation by Baskakov-Durrmeyer operators based on \((p, q)\)-integers. Math. Slovaca 2018, 68 (4), 897–906. doi:10.1515/ms-2017-0153
  12. Acar T., Mohiuddine S.A., Mursaleen M. Approximation by \((p, q)\)-Baskakov-Durrmeyer-Stancu operators. Complex Anal. Oper. Theory 2018, 12 (6), 1453–1468. doi:10.1007/s11785-016-0633-5
  13. Bartle R.G., Sherbert D.R. Introduction to Real Analysis. John Wiley and Sons, Inc., University of Illinois, Urbana-Champaign, 2010.
  14. Bernstein S.N. Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Comm. Kharkov Math. Soc. 1912, 13, 1–2.
  15. Bèzier P.E. Numerical Control-Mathematics and applications. John Wiley and Sons, London, 1972.
  16. Cai Q.B., Xu X.W. A basic problem of \((p,q)\)-Bernstein-type operators. J. Inequal. Appl. 2017, 140 (2017), 1–7. doi:10.1186/s13660-017-1413-0
  17. Cai Q.B., Cheng W.T. Convergence of \(\lambda\)-Bernstein operators based on \((p, q)\)-integers. J. Inequal. Appl. 2020, 35 (2020), 1–17. doi:10.1186/s13660-020-2309-y
  18. Goldman R. Pyramid Algorithms: A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Elsevier Science, 2003.
  19. Farouki R.T., Rajan V.T. Algorithms for polynomials in Bernstein form. Comput. Aided Geom. Design 1988, 5 (1), 1–26. doi:10.1016/0167-8396(88)90016-7
  20. Han L., Chu Y., Qiu Z. Generalized Bèzier curves and surfaces based on Lupaş \(q\)-analogue of Bernstein operator. J. Comput. Appl. Math. 2014, 261, 352–363. doi:10.1016/j.cam.2013.11.016
  21. Kadak U. On weighted statistical convergence based on \((p,q)\)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 2016, 443 (2), 752–764. doi:10.1016/J.JMAA.2016.05.062
  22. Kadak U., Mishra V.N., Pandey S. Chlodowsky type generalization of \((p,q)\)-Szász operators involving Brenke type polynomials. Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Math. RACSAM 2018, 112 (4), 1443–1462.
  23. Kadak U., Mohiuddine S.A. Generalized statistically almost convergence based on the difference operator, which includes the \((p,q)\)-Gamma function and related approximation theorems. Results Math. 2018, 73, article no. 9. doi:10.1007/s00025-018-0789-6
  24. Kadak U. Weighted statistical convergence based on generalized difference operator involving \((p,q)\)-Gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 2017, 448 (2), 1633–1650. doi:10.1016/J.JMAA.2016.11.084
  25. Khan Kh., Lobiyal D.K., Kilicman A. A de Casteljau Algorithm for Bernstein type Polynomials based on \((p,q)\)-integers. Appl. Appl. Math. 2018, 13 (2), 997–1017.
  26. Khan Kh., Lobiyal D.K., Kilicman A. Bézier curves and surfaces based on modified Bernstein polynomials. Azerb. J. Math. 2019, 9 (1), 3–21.
  27. Khan Kh. Generalized Bézier curves and their applications in computer aided geometric design. Ph.D. Thesis, SC & SS, JNU New Delhi, 2019.
  28. Khan Kh., Lobiyal D.K. Bézier curves based on Lupaş \((p,q)\)-analogue of Bernstein function in CAGD. Jour. Comput. Appl. Math. 2017, 317, 458–477.
  29. Karim S.A.A., Saaban A., Skala V., Ghaffar A., Nisar K.S., Baleanu D. Construction of new cubic Bézier-like triangular patches with application in scattered data interpolation. Adv. Differ. Equ. 2020, 151 (2020). doi:10.1186/s13662-020-02598-w
  30. Lupaş A. A \(q\)-analogue of the Bernstein operator. Semin. Numer. Stat. Calculus 1987, 9, 85–92.
  31. Korovkin P.P. Linear operators and approximation theory. Hindustan Publishing Corporation, Delhi, 1960.
  32. Lewanowicz S., Woźny P. Generalized Bernstein polynomials. BIT 2004, 44 (1), 63–78. doi:10.1023/B:BITN.0000025086.89121.d8
  33. Mishra V.N., Patel P.On generalized integral Bernstein operators based on \(q\)-integers. Appl. Math. Comput. 2014, 242 (1), 931–944. doi:10.1016/j.amc.2014.05.134
  34. Mohiuddine S.A., Alotaibi A., Acar T. Durrmeyer type \((p,q)\)-Baskakov operators preserving linear functions. J. Math. Inequal. 2018, 12 (4), 961–73. doi:10.7153/jmi-2018-12-73
  35. Mursaleen M., Ansari K.J., Khan A. On \((p,q)\)-analogue of Bernstein Operators. Appl. Math. Comput. 2015, 266, 874–882.
  36. Mursaleen M., Ansari K.J., Khan A. Some approximation results by (p,q)-analogue of Bernstein-Stancu operators. Appl. Math. Comput. 2015, 264, 392–402.
  37. Mursaleen M., Nasiruzzaman Md., Nurgali A. Some approximation results on Bernstein-Schurer operators defined by \((p,q)\)-integers. J. Inequal. Appl. 2015, 249. doi:10.1186/s13660-015-0767-4
  38. Mursaleen M., Nasiruzzaman Md., Ansari K. J., Alotaibi A. Generalized \((p,q)\)-Bleimann-Butzer-Hahn operators and some approximation results. J. Inequal. Appl. 2017, 310. doi:10.1186/s13660-017-1582-x
  39. Mursaleen M., Nasiruzzaman Md., Khan A., Ansari K.J. Some approximation results on Bleimann-Butzer-Hahn operators defined by \((p,q)\)-integers. Filomat 2016, 30 (3), 639–648.
  40. Ostrovska S. On the Lupaş \(q\)-analogue of the Bernstein operator. Rocky Mountain J. Math. 2006, 36 (5), 1615–1629. doi:10.1216/rmjm/1181069386
  41. Phillips G.M. A generalization of the Bernstein polynomials based on the \(q\)-integers. ANZIAM J. 2000, 42 (1), 79–86. doi:10.1017/S1446181100011615
  42. Phillips G.M. Bernstein polynomials based on the \(q\)-integers. Annals Numer. Math. 1997, 4, 511–518.
  43. Phillips G.M. Interpolation and Approximation by Polynomials. Springer, New York, 2003.
  44. Rababah A., Manna S. Iterative process for G2-multi degree reduction of Bézier curves. Appl. Math. Comput. 2011, 217 (20), 8126–8133. doi:10.1016/j.amc.2011.03.016
  45. Simeonova P., Zafirisa V., Goldman R. \(q\)-Blossoming: A new approach to algorithms and identities for \(q\)-Bernstein bases and \(q\)-Bézier curves. J. Approx. Theory 2012, 164 (1), 77–104. doi:10.1016/j.jat.2011.09.006
  46. Rao N., Wafi A. \((p,q)\)-Bivariate-Bernstein-Chlodowsky operators. Filomat 2018, 32 (2), 369–378. doi:10.2298/FIL1802369R
  47. Rao N., Wafi A. Bivariate-Schurer-Stancu operators based on \((p,q)\)-integers. Filomat 2018, 32 (4), 1251–1258. doi:10.2298/FIL1804251R
  48. Zulkifli N.A.B., Karim S.A.A., Shafie A.B., Sarfraz M., Ghaffar A., Nisar K.S. Image interpolation using a rational bi-cubic Ball. Mathematics 2019, 7 (11), 1045. doi:10.3390/math7111045