References

  1. Belov A.S. Remarks on Mean Convergence (Boundedness) of Partial Sums of Trigonometric Series. Math. Notes 2002, 71 (5-6), 739–748. doi:10.1023/A:1015860510199 (translation of Mat. Zametki 2002, 71 (6) 807–817. doi:10.4213/mzm386 (in Russian))
  2. Bushev D.M. Approximation of classes of continuous periodic functions by Zygmund sums. Preprint. Inst. Math. AN USSR, Kyiv, 1984. (in Russian)
  3. Dzyadyk V.K. On best approximation in classes of periodic functions defined by integrals of a linear combination of absolutely monotonic kernels. Math. Notes 1974, 16 (5), 1008–1014. doi:10.1007/BF01149788 (translation of Mat. Zametki 1974, 16 (5), 691–701. (in Russian))
  4. Hrabova U.Z., Serdyuk A.S. Order estimates for the best approximations and approximations by Fourier sums of the classes of \((\psi,\beta)\)-differential functions. Ukrainian Math. J. 2014, 65 (9), 1319–1331. doi:10.1007/s11253-014-0861-7 (translation of Ukrain. Mat. Zh. 2013, 65 (9), 1186–1197. (in Ukrainian))
  5. Kamzolov A.I. Approximation of the functional classes \(\widetilde{W}^{\alpha}_{p}(L)\) in the spaces \(\mathcal L_{p}[-\pi,\pi]\) by the Fejér method. Math. Notes 1978, 23 (3), 185–189. doi:10.1007/BF01651429 (translation of Mat. Zametki 1978, 23 (3), 343–349. (in Russian))
  6. Kostich M. V. Approximation of functions from Weyl-Nagy classes by Zygmund averages. Ukrainian Math. J. 1998, 50 (5), 834–838. doi:10.1007/BF02514336 (translation of Ukrain. Mat. Zh. 1998 50 (5), 735–738. (in Ukrainian))
  7. Nagy B.Sz. Sur une classe générale de procèdès de sommation pour les sèries de Fourier. Acta Math. Hungar. 1948, 1 (3), 14–52.
  8. Nikol’skii S.M. Approximation of periodic functions by trigonometric polynomials. Tr. Mat. Inst. Steklova 1945, 15, 3–76. (in Russian)
  9. Pinkus A. \(n\)-Widths in approximation theory. Springer-Verlag, Berlin, 1985. doi:10.1007/978-3-642-69894-1
  10. Serdyuk A.S. On the best approximation of classes of convolutions of periodic functions by trigonometric polynomials. Ukrainian Math. J. 1995, 47 (9), 1435–1440. doi:10.1007/BF01057518 (translation of Ukrain. Mat. Zh. 1995, 47 (9), 1261–1265. (in Russian))
  11. Serdyuk A.S. Widths and best approximations for classes of convolutions of periodic functions. Ukrainian Math. J. 1999, 51 (5), 748–763. doi:10.1007/BF02591709 (translation of Ukrain. Mat. Zh. 1999, 51 (5), 674–687. (in Ukrainian))
  12. Serdyuk A.S. On best approximation in classes of convolutions of periodic functions. Approx. Theory of Functions and Related Problems. Proc. Inst. Math. NAS Ukr. 2002, 35, 172–194. (in Ukrainian)
  13. Serdyuk A.S. Best approximations and widths of classes of convolutions of periodic functions of high smoothness. Ukrainian Math. J. 2005, 57 (7), 1120–1148. doi:10.1007/s11253-005-0251-2 (translation of Ukrain. Mat. Zh. 2005, 57 (7), 946–971. (in Ukrainian))
  14. Serdyuk A.S., Hrabova U.Z. Estimates of uniform approximations by Zygmund sums on classes of convolutions of periodic functions. Approx. Theory of Functions and Related Problems. Proc. Inst. Math. NAS Ukr. 2013, 10 (1), 222–244. (in Ukrainian)
  15. Serdyuk A. S., Sokolenko I. V. Uniform approximation of the classes of \((\psi,\beta)\)-differentiable functions by linear methods. Extremal Problems of the Theory of Functions and Related Problems. Proc. Inst. Math. NAS Ukr. 2011, 8 (1), 181–189. (in Ukrainian)
  16. Serdyuk A.S., Sokolenko I. V. Asymptotic estimates for the best uniform approximations of classes of convolution of periodic functions of high smoothness. Ukr. Mat. Visn. 2020, 17 (3), 396–413. (in Ukrainian)
  17. Serdyuk A.S., Stepanyuk T.A. Estimations of the best approximations for the classes of infinitely differentiable functions in uniform and integral metrics. Ukrainian Math. J. 2014, 66 (9), 1393–1407. doi:10.1007/s11253-015-1018-z (translation of Ukrain. Mat. Zh. 2014, 66 (9), 1244–1256. (in Ukrainian))
  18. Serdyuk A.S., Stepanyuk T.A. Order estimates for the best approximations and approximations by Fourier sums in the classes of convolutions of periodic functions of low smoothness in the uniform metric. Ukrainian Math. J. 2014, 66 (12), 1862–1882. doi:10.1007/s11253-015-1056-6 (translation of Ukrain. Mat. Zh. 2014, 66 (12), 1658–1675. (in Ukrainian))
  19. Serdyuk A.S., Stepanyuk T.A. Uniform approximations by Fourier sums in classes of generalized Poisson integrals. Anal. Math. 2019, 45 (1), 201–236. doi:10.1007/s10476-018-0310-1
  20. Stepanets A.I. Methods of Approximation Theory. Walter de Gruyter, Berlin, 2005.
  21. Stepanyuk T.A. Estimates for the best approximations and approximation by Fourier sums of classes of convolutions of periodic functions of not high smoothness in integral metrics. Approx. Theory of Functions and Related Problems. Proc. Inst. Math. NAS Ukr. 2014, 11 (3), 241–269. (in Ukrainian)
  22. Sz.-Nagy B. Über gewisse Extremalfragen bei transformierten trigonometrischen Entwicklungen. Berichte der math.-phys. Kl. Akad. der Wiss. zu Leipzig, 1938, 90, 103–134.
  23. Telyakovskii S. A. On the norms of trigonometric polynomials and approximation of differentiable functions by linear averages of their Fourier series. Tr. Mat. Inst. Steklova 1961, 62, 61–97. (in Russian)
  24. Temlyakov V.N. Approximation of periodic functions. Computational Mathematics and Analysis Series. Nova Science Publ. Inc., NY, 1993.
  25. Tikhomirov V.M. Some questions in approximation theory. Moscow Univ. Publ., Moscow, 1976. (in Russian)
  26. Tikhonov S. Trigonometric series with general monotone coefficients. J. Math. Anal. Appl. 2007, 326 (1), 721–735. doi:10.1016/j.jmaa.2006.02.053
  27. Zygmund A. Smooth functions. Duke Math. J. 1945, 12 (1), 47–76. doi:10.1215/S0012-7094-45-01206-3
  28. Zygmund A. Trigonometric series. Vol. 2. Mir, Moscow, 1965. (in Russian)