References

  1. Antonova T.M. Speed of convergence of branched continued fractions of the special form. Volynskyi Mat. Visnyk 1999, 6, 5-11. (in Ukrainian)
  2. Antonova T.M., Bodnar D.I. Convergence domains for branched continued fractions of the special form. Approx. Theory and its Appl.: Proc. Inst. Math. NAS Ukr. 2000, 31, 19-32. (in Ukrainian)
  3. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction $\displaystyle\sum_{i_1=1}^N\frac{a_{i(1)}}{1}{\atop+}\sum_{i_2=1}^{i_1}\frac{a_{i(2)}}{1}{\atop+}\sum_{i_3=1}^{i_2}\frac{a_{i(3)}}{1}{\atop+}\ldots$. Ukrain. Mat. Zh. 2020, 72 (7), 877-885. doi: 10.37863/umzh.v72i7.2342 (in Ukrainian)
  4. Antonova T.M., Dmytryshyn R.I. Truncation error bounds for branched continued fraction whose partial denominators are equal to unity. Mat. Stud. 2020, 54 (1), 3-14. doi: 10.30970/ms.54.1.3-14
  5. Baran O.E. An analog of the Vorpits’kii convergence criterion for branched continued fractions of special form. J. Math. Sci. 1998, 90 (5), 2348-2351. doi: 10.1007/BF02433964 (translation of Mat. Metody Fiz.-Mekh. Polya 1996, 39 (2), 35-38. (in Ukrainian))
  6. Baran O.E. Some convergence regions of branched continued fractions of special form. Carpathian Math. Publ. 2013, 5 (1), 4-13. doi: 10.15330/cmp.5.1.4-13 (in Ukrainian)
  7. Baran O.E. Twin circular domains of convergence of branched continued fractions with inequivalent variables. J. Math. Sci. 2011, 174 (2), 209-218. doi: 10.1007/s10958-011-0291-0 (translation of Mat. Metody Fiz.-Mekh. Polya 2009, 52 (4), 73-80. (in Ukrainian))
  8. Bilanyk I.B. A truncation error bound for some branched continued fractions of the special form. Mat. Stud. 2019, 52 (2), 115-123. doi: 10.30970/ms.52.2.115-123
  9. Bodnar D.I. Branched continued fractions. Naukova Dumka, Kiev, 1986. (in Russian)
  10. Bodnar D.I., Bilanyk I.B. Estimates of the rate of pointwise and uniform convergence for branched continued fractions with nonequivalent variables. Mat. Metody Fiz.-Mekh. Polya 2019, 62 (4), 72-82. (in Ukrainian)
  11. Bodnar D.I., Bilanyk I.B. On the convergence of branched continued fractions of a special form in angular domains. J. Math. Sci. 2020, 246 (2), 188-200. doi: 10.1007/s10958-020-04729-w (translation of Mat. Metody Fiz.-Mekh. Polya 2017, 60 (3), 60-69. (in Ukrainian))
  12. Bodnar D.I., Dmytryshyn R.I., Multidimensional associated fractions with independent variables and multiple power series. Ukrainian Math. J. 2019, 71 (3), 370-386. doi: 10.1007/s11253-019-01652-5 (translation of Ukrain. Mat. Zh. 2019, 71 (3), 325-339. (in Ukrainian))
  13. Bodnar O.S., Dmytryshyn~R.I. On the convergence of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2018, 10 (1), 58-64. doi: 10.15330/cmp.10.1.58-64
  14. Dmytryshyn R.I. Associated branched continued fractions with two independent variables. Ukrainian Math. J. 2015, 66 (9), 1312-1323. doi: 10.1007/s11253-015-1011-6 (translation of Ukrain. Mat. Zh. 2014, 66 (9), 1175-1184. (in Ukrainian))
  15. Dmytryshyn R.I. Convergence of some branched continued fractions with independent variables. Mat. Stud. 2017, 47 (2), 150-159. doi: 10.15330/ms.47.2.150-159
  16. Dmytryshyn R.I. Multidimensional regular C-fraction with independent variables correspon\-ding to formal multiple power series. Proc. Roy. Soc. Edinburgh Sect. A 2020, 150 (4), 153-1870. doi: 10.1017/prm.2019.2
  17. Dmytryshyn R.I. On some of convergence domains of multidimensional S-fractions with independent variables. Carpathian Math. Publ. 2019, 11 (1), 54-58. doi: 10.15330/cmp.11.1.54-58
  18. Dmytryshyn R.I. On the convergence criterion for branched continued fractions with independent variables. Carpathian Math. Publ. 2017, 9 (2), 120-127. doi: 10.15330/cmp.9.2.120-127
  19. Dmytryshyn R.I. On the expansion of some functions in a two-dimensional g-fraction with independent variables. J. Math. Sci. (N.Y.) 2012, 181 (3), 320-327. doi: 10.1007/s10958-012-0687-5 (translation of Mat. Metody Fiz.-Mekh. Polya 2010, 53 (4), 56-69. (in Ukrainian))
  20. Dmytryshyn R.I. The multidimensional generalization of g-fractions and their application. J. Comput. Appl. Math. 2004, 164-165, 265-284. doi: 10.1016/S0377-0427(03)00642-3
  21. Dmytryshyn R.I. The two-dimensional g-fraction with independent variables for double power series. J. Approx. Theory 2012, 164 (12), 1520-1539. doi: 10.1016/j.jat.2012.09.002
  22. Wall H.S. Analytic theory of continued fractions. Van Nostrand, New York, 1948.