References

  1. Adams R.A. Sobolev spaces. Academic Press, New York, San Francisco, London, 1975.
  2. Antontsev S., Ferreira J. Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions. Nonlinear Anal. 2013, 93, 62-77. doi: 10.1016/j.na.2013.07.019
  3. Antontsev S., Shmarev S. Evolution PDEs with nonstandard growth conditions. Existence, uniqueness, localization, blow-up. Atlantis Press, Paris, 2015.
  4. Avci M., Ayazoglu (Mashiyev) R., Cekic B. Existance of solutions for an elliptic equation with nonstandard growth. Internat. J. Pure and Appl. Math. 2013, 86 (1), 131-139. doi: 10.12732/ijpam.v86i1.10
  5. Bandaliyev R.A., Guliyev V.S., Mamedov I.G., Sadigov A.B. The optimal control problem in the processes described by the Goursat problem for a hyperbolic equation in variable exponent Sobolev spaces with dominating mixed derivatives. J. Comput. Appl. Math. 2016, 305, 11-17. doi: 10.1016/j.cam.2016.03.024
  6. Bokalo M.M. Almost periodic solutions of anisotropic elliptic-parabolic equations with variable exponents of nonlinearity. Electron. J. Differential Equations 2014, 2014 (169), 1-13.
  7. Bokalo M.M., Buhrii O.M., Mashiyev R.A. Unique solvability of initial-boundary-value problems for anisotropic elliptic-parabolic equations with variable exponents of nonlinearity. J. Nonlinear Evol. Equ. Appl. 2014, 2013 (6), 67-87.
  8. Bokalo M.M., Ilnytska O.V. Problems for parabolic equations with variable exponents of nonlinearity and time delay. Appl. Anal. 2017, 96 (7), 1240-1254. doi: 10.1080/00036811.2016.1183771
  9. Bokalo T., Buhrii O. Some integrating by parts formulas in variable indices of nonlinearity function spaces. Visnyk of the Lviv Univ. Ser. Mech. Math. 2009, 71, 13-26. (in Ukrainian)
  10. Buhrii O.M. Finiteness of time vanishing of the solution of a nonlinear parabolic variational inequality with variable exponent of nonlinearity. Mat. Studii 2005, 24 (2), 167-172. (in Ukrainian)
  11. Buhrii O., Buhrii N. Integro-differential systems with variable exponents of nonlinearity. Open Math. 2017, 15, 859-883. doi: 10.1515/math-2017-0069
  12. Buhrii O., Buhrii N. Nonlocal in time problem for anisotropic parabolic equations with variable exponents of nonlinearities. J. Math. Anal. Appl. 2019, 473, 695-711. doi: 10.1016/j.jmaa.2018.12.058
  13. Buhrii O.M., Domans'ka G.P., Protsakh N.P. Initial boundary value problem for nonlinear differential equation of the third order in generalized Sobolev spaces. Visnyk of the Lviv Univ. Ser. Mech. Math. 2005, 64, 44-61. (in Ukrainian)
  14. Buhrii O., Hurnyak I., Pukach P., Kholyavka O. Second order hyperbolic variational inequalities with variable exponent of nonlinearity. Visnyk of the Lviv Univ. Ser. Mech. Math. 2012, 77, 41-53. (in Ukrainian)
  15. Coddington E.A., Levinson N. Theory of ordinary differential equations. Izd. Inostr. Lit., Moscow, 1958.
  16. Diening L., Harjulehto P., Hästö P., Růžička M. Lebesgue and Sobolev spaces with variable exponents. Heidelberg, Springer, 2011.
  17. Domans'ka G.P., Lavrenyuk S.P., Protsakh N.P. Problem for nonlinear hyperbolic equation of the third order. Visnyk (Herald) of Chernivtsi University. Series Math. 2005, 269, 34-42. (in Ukrainian)
  18. Gajewski H., Gröger K., Zacharias K. Nonlinear operator equations and operator differential equations. Mir, Moscow, 1978. (in Russian)
  19. Gao Y., Gao W. Existence of weak solutions for viscoelastic hyperbolic equations with variable exponents. Bound Value Probl. 2013, 2013 (208), 1-8. doi: 10.1186/1687-2770-2013-208
  20. Guo B., Gao W. Blow-up of solutions to quasilinear hyperbolic equations with p-Laplacian and positive initial energy. Comptes Rendus M\'ecanique 2014, 342 (9), 513-519. doi: 10.1016/j.crme.2014.06.001
  21. Haehnle J., Prohl A. Approximation of nonlinear wave equations with nonstandard anisotropic growth conditions. Math. Comp. 2010, 79, 189-208. doi: 10.1090/S0025-5718-09-02231-5
  22. Kholyavka O.T. Hyperbolic varionation inequality of the third order with variable exponent of nonlinearity. Ukrainian Math. J. 2014, 766, 580-593. doi: 10.1007/s11253-014-0955-2 (translation of Ukrainian Math. J. 2014, 66 (4) 580-593. (in Ukrainian))
  23. Lavrenyuk S., Panat O. The mixed problem for a semilinear hyperbolic equation in generalized Lebesgue spaces. Visnyk of the Lviv Univ. Ser. Mech. Math. 2006, 66, 243-260. (in Ukrainian)
  24. Lavrenyuk S.P., Panat O.T. Mixed problem for nonlinear hyperbolic equation in an unbounded domain. Reports of the National Academy of Sciences of Ukraine. 2007, 1, 12-17. (in Ukrainian)
  25. Lavrenyuk S., Panat O. Adjoint problem for hyperbolic equations of the second and third order. Visnyk of the Lviv Univ. Ser. Mech. Math. 2008, 68, 158-170. (in Ukrainian)
  26. Lavrenyuk S.P., Panat O.T. Some variational inequality of the third order with variable exponent of nonlinearity in unbounded domain. Visnyk of the Odessa Univ. Ser. Math. Mech. 2008, 13 (18), 55-61. (in Ukrainian)
  27. Li X., Guo B., Liao M. Asymptotic stability of solutions to quasilinear hyperbolic equations with variable sources. Comput. Math. Appl. 2020, 79 (4), 1012-1022. doi: 10.1016/j.camwa.2019.08.016
  28. Lions J.-L. Some methods of solving non-linear boundary value problems. Mir, Moscow, 1972. (in Russian)
  29. Lions J.-L., Magenes E. Non-homogeneous boundary value problems and applications. Mir, Moscow, 1971. (in Russian)
  30. Lions J.-L., Strauss W.A. Some non-linear evolution equations. Bull. Soc. Math. France 1965, 93, 43-96.
  31. Messaoudi S.A., Talahmeh A.A., Al-Smail J.H. Nonlinear damped wave equation: Existence and blow-up. Comput. Math. Appl. 2017, 74 (12), 3024-3041. doi: 10.1016/j.camwa.2017.07.048
  32. Messaoudi S.A., Talahmeh A.A. On wave equation: review and recent results. Arab. J. Math. (Springer) 2018, 7, 113-145. doi: 10.1007/s40065-017-0190-4
  33. Mikhailov V.P. Partial differential equations. Nauka, Moscow, 1983. (in Russian)
  34. Nechepurenko M. The mixed problem for a nonlinear hyperbolic-parabolic system in an unbounded domain. Visnyk of the Lviv Univ. Ser. Mech. Math. 2009, 71, 156-174.
  35. Oleinik O.A., Radkevich E.V. Method of introducing of a parameter for evolution equations. Russian Math. Surveys. 1978, 33, 7-84. (in Russian)
  36. Panat O.T. About the solving of the mixed problem for nonlinear evolutional equation of the third order. Visnyk of the Chernivtsi Univ. Ser. Math. 2007, 336-337, 142-150. (in Ukrainian)
  37. Panat O. Some properties of the solutions to the evolutions equations of the third order with variable exponents of nonlinearity. Visnyk of the Lviv Univ. Ser. Mech. Math. 2012, 71, 184-190. (in Ukrainian)
  38. Panat O.T., Buhrii O.M. Some properties of the solutions to the hyperbolic equations with variable exponents of nonlinearity. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci. 2010, 30 (1), 155-160.
  39. Pinasco J.P. Blow-up for parabolic and hyperbolic problems with variable exponents. Nonlinear Anal. 2009, 71 (3-4), 1094-1099. doi: 10.1016/j.na.2008.11.030
  40. Pukach P., Il'kiv V., Vovk M., Slyusarchuk O., Pukach Y., Mylyan Y., Auzinger W. On the Mathematical Model of Nonlinear Vibrations of a Biologically Active Rod with Consideration of the Rheological Factor. CEUR Workshop Proceedings 2019, 2488, 30-42.
  41. Pukach P., Il'kiv V., Nytrebych Z., Vovk M., Pukach P. Modified Asymptotic Method of Studying the Mathematical Model of Nonlinear Oscillations under the Impact of a Moving Environment. Advances in Intelligent systems and Computing IV. 2020, 1080, 78-89. doi: 10.1007/978-3-030-33695-0_7
  42. Rădulescu V., Repovš D. Partial differential equations with variable exponents: variational methods and qualitative analysis. CRC Press, Boca Raton, London, New York, 2015.
  43. Růžička M. Electrorheological fluids: modeling and mathematical theory. Springer-Verl., Berlin, 2000.