References
- Anderson D.F., Livingston P.S. The zero divisor graph of a
commutative ring. J. Algebra 1999,
217 (2), 434–447.
doi:10.1006/jabr.1998.7840
- Aouchiche M., Hansen P. Two Laplacians for the distance matrix of
a graph. Linear Algebra Appl. 2013,
439 (1), 21–33.
doi:10.1016/j.laa.2013.02.030
- Aouchiche M., Hansen P. Some properties of the distance Laplacian
eigenvalues a graph. Czechoslovak Math. J. 2014,
64 (3), 751–761.
doi:10.1007/s10587-014-0129-2
- Atiyah M.F., MacDonald I.G. Introduction to Commutative Algebra.
Addison Wesley Publ., Boston, 1994.
- Chattopadhyay S., Patra K.L., Sahoo B.K. Laplacian eigenvalues of
the zero divisor graph of the ring \(\mathbb{Z}_{n}\). Linear Algebra Appl.
2020, 584, 267–286.
doi:10.1016/j.laa.2019.08.015
- Cvetković D.M., Rowlinson P., Simić S. An Introduction to Theory of
Graph spectra. Cambridge University Press, Cambridge, 2010.
doi:10.1017/CBO9780511801518
- Ganie H.A. On distance Laplacian spectrum (energy) of
graphs. Discrete Math. Algorithms Appl. 2020,
12 (5), 2050061.
doi:10.1142/S1793830920500615
- Horn R., Johnson C. Matrix Analysis. Cambridge University Press,
Cambridge, 2013.
- Young M. Adjacency matrices of zero divisor graphs of integer
modulo \(n\). 2015, Involve
8 (5), 753–761. doi:10.2140/involve.2015.8.753
- Pirzada S. An Introduction to Graph Theory. Universities Press,
Orient BlackSwan, Hyderabad, 2012.
- Pirzada S., Rather B.A., Aijaz M., Chishti T.A. On distance
signless Laplacian spectrum of graphs and spectrum of zero divisor
graphs of \(\mathbb{Z}_n\). Linear
Multilinear Algebra 2020. doi:10.1080/03081087.2020.1838425
- Pirzada S., Rather B.A., Shaban R.U., Merajuddin. On signless
Laplacian spectrum of the zero divisor graphs of the ring \(\mathbb{Z}_{n}\). Korean J. Math.
2021, 29 (1), 13–24.
- Rather B.A., Pirzada S., Naikoo T.A., Shang Y. On Laplacian
eigenvalues of the zero-divisor graph associated to the ring of integers
modulo \(n\). Mathematics 2021,
9 (5), 482. doi:10.3390/math9050482
- Stevanović D. Large sets of long distance equienergetic
graphs. Ars Math. Contemp. 2009, 2
(1), 35–40. doi:10.26493/1855-3974.93.e75