References

  1. Abbas M., Nazir T., Vetro P. Common fixed point results for three maps in $G$-metric spaces. Filomat 2011, 25 (4), 1-17.
  2. Agarwal R.P., Kadelburg Z., Radenović S. On coupled fixed point results in asymmetric $G$-metric spaces. J. Inequal. Appl. 2013, 528. doi: 10.1186/1029-242X-2013-528
  3. Aghajani A., Abbas M., Roshan J.R. Common fixed point of generalized weak contractive mappings in partially ordered $G_b$-metric spaces. Filomat 2014, 28 (6), 1087-1101.
  4. Ansari A.H., Ege O., Radenović S. Some fixed point results on complex valued $G_{b}$-metric spaces. RACSAM 2018, 112, 463-472. doi: 10.1007/s13398-017-0391-x
  5. Aydi H., Bota M.F., Karapinar E., Mitrović S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 88. doi: 10.1186/1687-1812-2012-88
  6. Aydi H., Bota M.F., Karapinar E., Moradi S. A common fixed point for weak $ \phi $-contractions on b-metric spaces. Fixed Point Theory 2012, 13 (2), 337-346.
  7. Aydi H., Felhi A., Sahmim S. On common fixed points for $(\alpha,\psi)$-contractions and generalized cyclic contractions in $b$-metric-like spaces and consequences. J. Nonlinear Sci. Appl. 2016, 9, 2492-2510.
  8. Aydi H., Shatanawi W., Vetro C. On generalized weakly $ G $-contraction mapping in $ G $-metric spaces. Comput. Math. Appl. 2011, 62, 4222-4229.
  9. Azam A., Fisher B., Khan M. Common fixed point theorems in complex valued metric spaces. Number. Funct. Anal. Optim. 2011, 32, 243-253.
  10. Bakhtin I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26-37.
  11. Boriceanu M., Bota M., Petrusel A. Multivalued fractals in $b$-metric spaces. Cent. Eur. J. Math. 2010, 8 (2), 367-377.
  12. Czerwik S. Contraction mappings in $b$-metric spaces. Acta. Math. Inform. Univ. Ostraviensis 1993, 1, 5-11.
  13. Douglas R.G. Banach algebra techniques in operator theory. Springer, Berlin, 1998.
  14. Ege O. Complex valued $G_{b}$-metric spaces. J. Comput. Anal. Appl. 2016, 21 (2), 363-368.
  15. Ege O. Some fixed point theorems in complex valued $G_{b}$-metric spaces. J. Nonlinear Convex Anal. 2017, 8 (11), 1997-2005.
  16. Kadelburg Z., Radenović S. Fixed point results in $C^{*}$-algebra-valued metric spaces are direct consequences of their standard metric counterparts. Fixed Point Theory Appl. 2016, 53. doi: 10.1186/s13663-016-0544-1
  17. Kamran, T., Postolache, M., Ghiura, A., Batul S., Ali R. The Banach contraction principle in $ C^{*} $-algebra-valued b-metric spaces with application. Fixed Point Theory Appl. 2016, 10. doi: 10.1186/s13663-015-0486-z
  18. Kang S.M., Singh B., Gupta V., Kumar S. Contraction principle in complex valued $G$-metric spaces. Int. J. Math. Anal. 2013, 7 (52), 2549-2556.
  19. Lal Shateri T. $C^{*}$-algebra-valued modular spaces and fixed point theorems. J. Fixed Point Theory Appl. 2017, 19 (1551). doi: 10.1007/s11784-017-0424-2
  20. Ma Z., Jiang L. $C^{*}$-algebra-valued $b$-metric spaces and related fixed point theorems. Fixed point Theory Appl. 2015, 222. doi: 10.1186/s13663-015-0471-6
  21. Ma Z., Jiang L., Sun H. $ C^* $-algebra-valued metric spaces and related fixed point theorems. Fixed Point Theory Appl. 2014, 206. doi: 10.1186/1687-1812-2014-206
  22. Moeini B., Ansari A.H., Park C. $\mathcal{JHR}$-operator pairs in $C^*$-algebra-valued modular metric spaces and related fixed point results via $C_{*}$-class functions. J. Fixed Point Theory Appl. 2018, 17. doi: 10.1007/s11784-018-0516-7
  23. Moeini B., Ansari A.H., Aydi H. Zamfirescu type contractions on $C^*$-algebra-valued metric spaces. J. Math. Anal. 2018, 9 (1), 150-161.
  24. Mustafa Z., Sims B. A new approach to a generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289-297.
  25. Mustafa Z., Roshan J.R., Parvaneh V. Coupled coincidence point results for $(\psi,\varphi)$-weakly contractive mappings in partially ordered $G_b$-metric spaces. Fixed Point Theory Appl. 2013, 206. doi: 10.1186/1687-1812-2013-206
  26. Mustafa Z., Roshan J.R., Parvaneh V. Existence of a tripled coincidence point in ordered $G_b$-metric spaces and applications to a system of integral equations. J Inequal Appl. 2013, 453. doi: 10.1186/1029-242X-2013-453
  27. Mustafa Z., Sims B. Fixed point theorems for contractive mappings in complete $G$-metric spaces. Fixed Point Theory Appl. 2009, 917175. doi: 10.1155/2009/917175
  28. Mustafa Z., Jaradat M.M.M., Aydi H., Alrhayyel A. Some common fixed points of six mappings on $G_b$- metric spaces using $(E.A)$ property. Eur. J. Pure Appl. Math. 2018, 11 (1), 90-109.
  29. Mustafa Z., Aydi H., Karapinar E. Generalized Meir-Keeler type contractions on $ G$-metric spaces. Appl. Math. Comput. 2013, 219, 10441-10447.
  30. Parvaneh V., Rezaei Roshan J., Radenović S. Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations. Fixed Point Theory Appl. 2013, 130. doi: 10.1186/1687-1812-2013-130
  31. Rao K.P.R., BhanuLakshmi K., Mustafa Z., Raju V.C.C. Fixed and related fixed point theorems for three maps in $G$-metric spaces. J. Adv. Stud. Topol. 2012, 3 (4), 12-19.
  32. Rao K.P.R., Swamy P.R., Prasad J.R. A common fixed point theorem in complex valued $b$-metric spaces. Bull. Math. Stat. Res. 2013, 1 (1), 1-8.
  33. Sedghi S., Shobkolaei N., Roshan J.R., Shatanawi W. Coupled fixed point theorems in $G_b$-metric spaces. Mat. Vesnik 2014, 66 (2), 190-201.
  34. Shehwar D., Kamran T. $C^{*}$-valued $G$-contraction and fixed points. J. Inequal. Appl. 2015, 2015 304. doi: 10.1186/s13660-015-0827-9
  35. Tahat N., Aydi H., Karapinar E., Shatanawi W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in $ G $-metric spaces. Fixed Point Theory Appl. 2012, 2012 48. doi: 10.1186/1687-1812-2012-48
  36. Zada A., Saifullah S., Ma Z. Common fixed point theorems for $G$-contraction in $C^{*}$-algebra-valued metric spaces. Int. J. Anal. Appl. 2016, 11 (1), 23-27.