References
-
Abbas M., Nazir T., Vetro P.
Common fixed point results for three maps in $G$-metric spaces.
Filomat 2011, 25 (4), 1-17.
-
Agarwal R.P., Kadelburg Z., Radenović S.
On coupled fixed point results in asymmetric $G$-metric spaces.
J. Inequal. Appl. 2013, 528.
doi: 10.1186/1029-242X-2013-528
-
Aghajani A., Abbas M., Roshan J.R.
Common fixed point of generalized weak contractive mappings in partially ordered $G_b$-metric spaces.
Filomat 2014, 28 (6), 1087-1101.
-
Ansari A.H., Ege O., Radenović S.
Some fixed point results on complex valued $G_{b}$-metric spaces.
RACSAM 2018, 112, 463-472.
doi: 10.1007/s13398-017-0391-x
-
Aydi H., Bota M.F., Karapinar E., Mitrović S.
A fixed point theorem for set-valued quasi-contractions in b-metric spaces.
Fixed Point Theory Appl. 2012, 88.
doi: 10.1186/1687-1812-2012-88
-
Aydi H., Bota M.F., Karapinar E., Moradi S.
A common fixed point for weak $ \phi $-contractions on b-metric spaces.
Fixed Point Theory 2012, 13 (2), 337-346.
-
Aydi H., Felhi A., Sahmim S.
On common fixed points for $(\alpha,\psi)$-contractions and generalized cyclic contractions in $b$-metric-like spaces and consequences.
J. Nonlinear Sci. Appl. 2016, 9, 2492-2510.
-
Aydi H., Shatanawi W., Vetro C.
On generalized weakly $ G $-contraction mapping in $ G $-metric spaces.
Comput. Math. Appl. 2011, 62, 4222-4229.
-
Azam A., Fisher B., Khan M.
Common fixed point theorems in complex valued metric spaces.
Number. Funct. Anal. Optim. 2011, 32, 243-253.
-
Bakhtin I.A.
The contraction mapping principle in quasimetric spaces.
Funct. Anal. Unianowsk Gos. Ped. Inst. 1989, 30, 26-37.
-
Boriceanu M., Bota M., Petrusel A.
Multivalued fractals in $b$-metric spaces.
Cent. Eur. J. Math. 2010, 8 (2), 367-377.
-
Czerwik S.
Contraction mappings in $b$-metric spaces.
Acta. Math. Inform. Univ. Ostraviensis 1993, 1, 5-11.
-
Douglas R.G.
Banach algebra techniques in operator theory.
Springer, Berlin, 1998.
-
Ege O.
Complex valued $G_{b}$-metric spaces.
J. Comput. Anal. Appl. 2016, 21 (2), 363-368.
-
Ege O.
Some fixed point theorems in complex valued $G_{b}$-metric spaces.
J. Nonlinear Convex Anal. 2017, 8 (11), 1997-2005.
-
Kadelburg Z., Radenović S.
Fixed point results in $C^{*}$-algebra-valued metric spaces are direct consequences of their standard metric counterparts.
Fixed Point Theory Appl. 2016, 53.
doi: 10.1186/s13663-016-0544-1
-
Kamran, T., Postolache, M., Ghiura, A., Batul S., Ali R.
The Banach contraction principle in $ C^{*} $-algebra-valued b-metric spaces with application.
Fixed Point Theory Appl. 2016, 10.
doi: 10.1186/s13663-015-0486-z
-
Kang S.M., Singh B., Gupta V., Kumar S.
Contraction principle in complex valued $G$-metric spaces.
Int. J. Math. Anal. 2013, 7 (52), 2549-2556.
-
Lal Shateri T.
$C^{*}$-algebra-valued modular spaces and fixed point theorems.
J. Fixed Point Theory Appl. 2017, 19 (1551).
doi: 10.1007/s11784-017-0424-2
-
Ma Z., Jiang L.
$C^{*}$-algebra-valued $b$-metric spaces and related fixed point theorems.
Fixed point Theory Appl. 2015, 222.
doi: 10.1186/s13663-015-0471-6
-
Ma Z., Jiang L., Sun H.
$ C^* $-algebra-valued metric spaces and related fixed point theorems.
Fixed Point Theory Appl. 2014, 206.
doi: 10.1186/1687-1812-2014-206
-
Moeini B., Ansari A.H., Park C.
$\mathcal{JHR}$-operator pairs in $C^*$-algebra-valued modular metric spaces and related fixed point results via $C_{*}$-class functions.
J. Fixed Point Theory Appl. 2018, 17.
doi: 10.1007/s11784-018-0516-7
-
Moeini B., Ansari A.H., Aydi H.
Zamfirescu type contractions on $C^*$-algebra-valued metric spaces.
J. Math. Anal. 2018, 9 (1), 150-161.
-
Mustafa Z., Sims B.
A new approach to a generalized metric spaces.
J. Nonlinear Convex Anal. 2006, 7, 289-297.
-
Mustafa Z., Roshan J.R., Parvaneh V.
Coupled coincidence point results for $(\psi,\varphi)$-weakly contractive mappings in partially ordered $G_b$-metric spaces.
Fixed Point Theory Appl. 2013, 206.
doi: 10.1186/1687-1812-2013-206
-
Mustafa Z., Roshan J.R., Parvaneh V.
Existence of a tripled coincidence point in ordered $G_b$-metric spaces and applications to a system of integral equations.
J Inequal Appl. 2013, 453.
doi: 10.1186/1029-242X-2013-453
-
Mustafa Z., Sims B.
Fixed point theorems for contractive mappings in complete $G$-metric spaces.
Fixed Point Theory Appl. 2009, 917175.
doi: 10.1155/2009/917175
-
Mustafa Z., Jaradat M.M.M., Aydi H., Alrhayyel A.
Some common fixed points of six mappings on $G_b$- metric spaces using $(E.A)$ property.
Eur. J. Pure Appl. Math. 2018, 11 (1), 90-109.
-
Mustafa Z., Aydi H., Karapinar E.
Generalized Meir-Keeler type contractions on $ G$-metric spaces.
Appl. Math. Comput. 2013, 219, 10441-10447.
-
Parvaneh V., Rezaei Roshan J., Radenović S.
Existence of tripled coincidence points in ordered b-metric spaces and an application to a system of integral equations.
Fixed Point Theory Appl. 2013, 130.
doi: 10.1186/1687-1812-2013-130
-
Rao K.P.R., BhanuLakshmi K., Mustafa Z., Raju V.C.C.
Fixed and related fixed point theorems for three maps in $G$-metric spaces.
J. Adv. Stud. Topol. 2012, 3 (4), 12-19.
-
Rao K.P.R., Swamy P.R., Prasad J.R.
A common fixed point theorem in complex valued $b$-metric spaces.
Bull. Math. Stat. Res. 2013, 1 (1), 1-8.
-
Sedghi S., Shobkolaei N., Roshan J.R., Shatanawi W.
Coupled fixed point theorems in $G_b$-metric spaces.
Mat. Vesnik 2014, 66 (2), 190-201.
-
Shehwar D., Kamran T.
$C^{*}$-valued $G$-contraction and fixed points.
J. Inequal. Appl. 2015, 2015 304.
doi: 10.1186/s13660-015-0827-9
-
Tahat N., Aydi H., Karapinar E., Shatanawi W.
Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in $ G $-metric spaces.
Fixed Point Theory Appl. 2012, 2012 48.
doi: 10.1186/1687-1812-2012-48
-
Zada A., Saifullah S., Ma Z.
Common fixed point theorems for $G$-contraction in $C^{*}$-algebra-valued metric spaces.
Int. J. Anal. Appl. 2016, 11 (1), 23-27.