References

  1. Alas O.T., Sanchis M. Countably Compact Paratopological Groups. Semigroup Forum 2007, 74, 423-438. doi: 10.1007/s00233-006-0637-y
  2. Arhangel'skiǐ A.V., Choban M.M. On paratopological groups and pseudocompactness. Preprint.
  3. Arhangel'skiǐ A.V., Choban M.M., Kenderov P.S. Topological games and topologies on groups. Math. Maced. 2010, 8, 1-19. %Journal abbreviation not found in serials.pdf
  4. Arhangel'skiǐ A.V., Reznichenko E.A. Paratopological and semitopological groups versus topological groups. Topology Appl. 2005, 151, 107-119. doi: 10.1016/j.topol.2003.08.035
  5. Arhangel'skiǐ A.V., Tkachenko M. Topological groups and related structures. Atlantis Press, Paris; World World Sci. Publ., Hackensack, NJ, 2008.
  6. Banakh T.O., Ravsky A.V. The regularity of quotient paratopological groups. Mat. Stud. 2018, 49 (2), 144-149. doi: 10.15330/ms.49.2.144-149
  7. Banakh T.O., Ravsky A.V. Each regular paratopological group is completely regular. Proc. Amer. Math. Soc. 2017, 145 (3), 1373-1382. doi: 10.1090/proc/13318
  8. Banakh T.O., Ravsky A.V. Feebly compact paratopological groups (version 7). -arXiv:1003.5343v7
  9. Bouziad A. Every Ćech-analytic Baire semitopological group is a topological group. Proc. Amer. Math. Soc. 1996, 124 (3), 953-959. % doi: not found
  10. Brand N. Another note on the continuity of the inverse. Arch. Math. (Basel) 1982, 39, 241-245. doi: 10.1007/BF01899530
  11. Dikranjan D.N., Prodanov I.R., Stoyanov L.N. Topological Groups: Characters Dualities and Minimal Group Topologies, (2nd edn.), In: Kabayashi S., Hewitt E. (Eds.) Monographs and Textbooks in Pure and Applied Mathematics, 130, Marcel Dekker, New York 1989.
  12. Dorantes-Aldama A., Shakhmatov D., Selective sequential pseudocompactness. Topology Appl. 2017, 222, 53-69. doi: 10.1016/j.topol.2017.02.016
  13. van Douwen E.K., Reed G.M., Roscoe A.W., Tree I.J. Star covering properties. Topology Appl. 1991, 39 (1), 71-103. doi: 10.1016/0166-8641(91)90077-Y
  14. Ellis R. Locally compact transformation groups. Duke Math. J. 1957, 24, 119-125. doi: 10.1215/S0012-7094-57-02417-1
  15. Ellis R. A note on the continuity of the inverse. Proc. Amer. Math. Soc. 1957, 8, 372-373. doi: 10.1090/S0002-9939-1957-0083681-9
  16. Engelking R. General topology. Heldermann, Berlin, 1989.
  17. Gutik O.V., Ravsky A.V. On old and new classes of feebly compact spaces. Visnyk of the Lviv Univ. Ser. Mech. Math. 2018, 85, 48-59. doi: 10.30970/vmm.2018.85.048-059
  18. Katĕtov M. On H-closed extensions of topological spaces. Ćasopis Pést. Mat. Fys. 1947, 72, 17-32.
  19. Kenderov P.S., Kortezov I.S., Moors W.B. Topological games and topological groups. Topology Appl. 2001, 109, 157-165. doi: 10.1016/S0166-8641(99)00152-2
  20. Korovin A. Continuous actions of Abelian groups and topological properties in $C_p$-theory. Ph.D. Thesis, Moscow State University, Moscow, 1990. (in Russian)
  21. Korovin A. Continuous actions of pseudocompact groups and the topological group axioms. Deposited in VINITI 1990, #3734-D, Moscow. (in Russian)
  22. Li P., Tu J.-J., Xie L.-H. Notes on (regular) $T_3$-reflections in the category of semitopological groups. Topology Appl. 2014, 178, 46-55. doi: 10.1016/j.topol.2014.09.001
  23. Lipparini P. A very general covering property. -arXiv:1105.4342
  24. Lawson J.D. Joint continuity in semitopological semigroups. Illinois J. Math. 1974, 18 (2), 275-285.
  25. Matveev M. A survey on star covering properties. Topology Atlas. Preprint #330. http://at.yorku.ca/v/a/a/a/19.htm
  26. Montgomery D. Continuity in topological groups. Bull. Amer. Math. Soc. 1936, 42, 879-882. doi: 10.1090/S0002-9904-1936-06456-6
  27. Moors W.B. Some Baire semitopological groups that are topological groups. Topology Appl. 2017, 230, 381-392. doi: 10.1016/j.topol.2017.08.042
  28. Pfister H. Continuity of the inverse. Proc. Amer. Math. Soc 1985, 95, 312-314. doi: 10.1090/S0002-9939-1985-0801345-5
  29. Pontrjagin L.S. Continuous groups. Nauka, Moscow, 1973. (in Russian)
  30. Ravsky A.V. Paratopological groups I. Mat. Stud. 2001, 16 (1), 37-48.
  31. Ravsky A.V. Paratopological groups II. Mat. Stud. 2002, 17 (1), 93-101.
  32. Ravsky A.V. The topological and algebraical properties of paratopological groups. Ph.D. Thesis Lviv University, Lviv, 2002. (in Ukrainian)
  33. Ravsky A.V. Post #209491 at MathOverflow.
  34. Ravsky A.V., Reznichenko E.A. The continuity of inverse in groups. In: Zagorodnuyk A.V., Hryniv R.O. Book of Abstracts of International Conference on Functional Analysis and its Applications Dedicated to the 110th anniversary of Stefan Banach, Lviv, Ukraine, May 28-31, 2002, Publ. Cent. of Ivan Franko National University of Lviv, Lviv, 2002, 170-172.
  35. Reznichenko E.A. Extension of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups. Topology Appl. 1994, 59, 33-44. doi: 10.1016/0166-8641(94)90021-3
  36. Reznichenko E.A. Čech complete semitopological group are topological groups. (Preprint).
  37. Stephenson Jr. R.M. Initially $\kappa$-compact and related compact spaces. In K. Kunen, J. E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V., Amsterdam, 1984, 603-632. doi: 10.1016/B978-0-444-86580-9.50016-1
  38. Stone M.H. Applications of the theory of Boolean rings to general topology. Trans. Amer. Math. Soc. 1937, 41, 375-481. doi: 10.1090/S0002-9947-1937-1501905-7
  39. Seminar "Topology $\&$ its Applications" at Chair of Geometry and Topology, Mechanics and Mathematics Faculty, Ivan Franko National University of Lviv. 28 November 2016. Not published.
  40. Tkachenko M. Semitopological and paratopological groups vs topological groups. In: Hart K.P., van Mill J., Simon P. (Eds.), Recent Progress in General Topology III, Springer Science $\&$ Business Media, 2013, 803-859.
  41. Tkachenko M. Axioms of separation in semitopological groups and related functors. Topology Appl. 2014, 161, 364-376. doi: 10.1016/j.topol.2013.10.037
  42. Vaughan J.E. Countably compact and sequentially compact spaces. In K. Kunen, J. E. Vaughan (Eds.), Handbook of Set-Theoretic Topology, Elsevier Science Publishers B.V., Amsterdam, 1984, 569-602. doi: 10.1016/B978-0-444-86580-9.50015-X
  43. Wallace A.D. The structure of topological semigroups. Bull. Amer. Math. Soc. 61 (1955), 95-112.