References
-
Ayupov S.A., Omirov B.A.
On 3-dimensional Leibniz algebras.
Uzbek Math. J. 1999, 1, 9-14.
-
Albeverio S., Omirov B.A., Rakhimov I.S.
Varieties of nilpotent complex Leibniz algebras of dimension less than five.
Comm. Algebra 2005, 33 (5), 1575-1585.
doi: 10.1081/AGB-200061038
-
Baer R.
Situation der Untergruppen und Struktur der Gruppe.
S.-B. Heidelberg Acad. Math.-Nat. Klasse 1933, 2, 12-17.
-
Baer R.
Endlichkeitskriterien für Kommutatorgruppen.
Math. Ann. 1952, 124 (1), 161-177.
doi: 10.1007/BF01343558
-
Bloh A.M.
On a generalization of the concept of Lie algebra.
Dokl. Akad. Nauk SSSR 1965, 165 (3), 471-473. (in Russian)
-
Bloh A.M.
Cartan-Eilenberg homology theory for a generalized class of Lie algebras.
Dokl. Akad. Nauk SSSR 1967, 175 (8), 824-826. (in Russian)
-
Bloh A.M.
A certain generalization of the concept of Lie algebra.
Algebra and number theory. Moskov. Gos. Ped. Inst. Uchen. Zap. 1971, 375, 9-20.
-
Butterfield J., Pagonis C.
From Physics to Philosophy.
Cambridge Univ. Press, Cambridge, 1999.
-
Casas J.M., Insua M.A., Ladra M., Ladra S.
An algorithm for the classification of 3-dimensional complex Leibniz algebras.
Linear Algebra Appl. 2012, 436 (9), 3747-3756.
doi: 10.1016/j.laa.2011.11.039
-
Chupordia V.A., Kurdachenko L.A., Subbotin I. Ya.
On some ''minimal'' Leibniz algebras.
J. Algebra Appl. 2017, 16 (05), 1750082 (16 pages).
doi: 10.1142/S0219498817500827
-
Demir I., Misra K.C., Stitzinger E.
On some structures of Leibniz algebras.
Recent Advances in Representation Theory, Quantum Groups, Algebraic Geometry, and Related Topics, Contemporary Mathematics 2014,
623, 41-54.
doi: 10.1090/conm623/12456
-
Dobrev V.
Lie Theory and its applications in physic. IX International workshop.
Springer, Tokyo, 2013.
-
Duplij S., Wess J.
Noncommutative Structures in Mathematics and Physics, Proceedings of the NATO advanced research workshop.
Springer, Kiev, 2001.
-
Farnsteiner R.
On the structure of simple-semiabelian Lie algebras.
Pacific J. Math. 1984, 111, 287-299.
doi: 10.2140/pjm.1984.111.287
-
Gejn A.G.
Minimal noncommutative and minimal nonabelian algebras.
Comm. Algebra 1985, 13, 305-328.
doi: 10.1080/00927878508823161
-
Gejn A.G., Kuznetsov S.V., Mukhin Yu.N.
On minimal non-nilpotent Lie algebras.
Ural. Gos. Univ. Mat. Zap. 1972, 8, 18-27.
-
Gejn A., Mukhin Yu.N.
Complements to subalgebras of Lie algebras.
Ural. Gos. Univ. Mat. Zap. 1980 12 (2), 24-48.
-
Kirichenko V.V., Kurdachenko L.A., Pypka A.A., Subbotin I.Ya.
Some aspects of Leibniz algebra theory.
Algebra Discrete Math. 2017 24 (1), 1-33.
-
Kurdachenko L.A., Otal J., Pypka A.A.
Relationships between factors of canonical central series of Leibniz algebras.
Eur. J. Math. 2016, 2 (2), 565-577.
doi: 10.1007/s40879-016-0093-5
-
Kurdachenko L.A., Semko N.N., Subbotin I.Ya.
The Leibniz algebras whose subalgebras are ideals.
Open Math. 2017, 15 (1), 92-100.
doi: 10.1515/math-2017-0010
-
Kurdachenko L.A., Semko N.N., Subbotin I.Ya.
On the anticommutativity in Leibniz algebras.
Algebra Discrete Math. 2018 26 (1), 97-109.
-
Kurdachenko L.A., Subbotin I.Y., Semko N.N.
From Groups to Leibniz Algebras: Common Approaches, Parallel Results.
Adv. Group Theory Appl. 2018 5, 1-31.
doi: 10.4399/97888255161421
-
Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S.
On Some Antipodes of the Ideals in Leibniz Algebras.
J. Algebra Appl. 2019.
doi: 10.1142/S0219498820501133
-
Kurdachenko L.A., Subbotin I.Ya., Yashchuk V.S.
Leibniz Algebras Whose Subideals are Ideals.
J. Algebra Appl. 2018, 17 (08) 1850151.
doi: 10.1142/S0219498818501517
-
Loday J.-L.
Une version non commutative des algèbres de Lie: les algèbras de Leibniz.
Enseign. Math. 1993, 39, 269-293.
-
Loday J.-L.
Cyclic homology.
Grundlehren Math. Wiss. Vol. 301, 2nd ed., Springer, Verlag, Berlin, 1998.
-
Neumann B.H.
Groups with finite classes of conjugate elements.
Proc. Lond. Math. Soc. 1951, 3 (1), 178-187.
doi: 10.1112/plms/s3-1.1.178
-
Stewart I.N.
Subideals of Lie algebras.
Ph.D. Thesis, University of Warwick. 1969.
-
Stewart I.N.
Verbal and marginal properties of non-associative algebras in the spirit of infinite group theory.
Proc. Lond. Math. Soc. 1974, 3 (28), 129-140.
doi: 10.1112/plms/s3-28.1.129
-
Stitzinger E.L.
Minimal nonnilpotent solvable Lie algebras.
Proc. Amer. Math. Soc. 1971, 28, 47-49.
doi: 10.1090/S0002-9939-1971-0271178-X
-
Towers D.A.
Lie algebras all whose proper subalgebras are nilpotent.
Linear Algebra Appl. 1980, 32, 61-73.
doi: 10.1016/0024-3795(80)90007-5
-
Vaughan-Lee M.R.
Metabelian BFC p-groups.
J. Lond. Math. Soc. 1972, 5 (4), 673-680.
doi: 10.1112/jlms/s2-5.4.673
-
Yashchuk V.S.
On some Leibniz algebras, having small dimension.
Algebra Discrete Math. 2019, 27 (2), 292-308.