References

  1. Bowers N.L., Gerber H.U., Hickman J.C., Jones D.A., Nesbitt C.J. Actuarial Mathematics. The Society of Actuaries, Itasca, Illinois, 1986.
  2. Buhlmann H. Mathematical Models in Risk Theory. Springer, Berlin, 1970.
  3. Chudziak J. On applications of inequalities for quasideviation means in actuarial mathematics. Math. Inequal. Appl. 2018, 21 (3), 601-610. doi: 10.7153/mia-2018-21-44
  4. Chudziak J. On existence and uniqueness of the principle of equivalent utility under Cumulative Prospect Theory. Insurance: Mathematics and Economics 2018, 79, 243-246. doi: 10.1016/j.insmatheco.2018.02.001
  5. Denneberg D. Lectures on Non-Additive Measure and Integral. Kluwer Academic, Boston, 1994.
  6. Gerber H. U. An Introduction to Mathematical Risk Theory. S.S. Huebner Foundation, Homewood Illinois, 1979.
  7. Heilpern S. A rank-dependent generalization of zero utility principle. Insurance: Mathematics and Economics 2003, 33 (1), 67-73. doi: 10.1016/S0167-6687(03)00144-6
  8. Kałuszka M., Krzeszowiec M. Pricing insurance contracts under Cumulative Prospect Theory. Insurance: Mathematics and Economics 2012, 50 (1), 159-166. doi: 10.1016/j.insmatheco.2011.11.001
  9. Kuczma M. An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's equation and Jensen's inequality. Birkhäuser, Berlin, 2009.
  10. Páles Zs. Characterization of quasideviation means. Acta Math. Hungar. 1982, 40 (3-4), 243-260. doi: 10.1007/BF01903583
  11. Páles Zs. General inequalities for quasideviation means. Aequationes Math. 1988, 36 (1), 32-56. doi: 10.1007/BF01837970
  12. Rachev S. T., Klebanov L. B., Stoyanov S. V., Fabozzi F. J. The Methods of Distances in the Theory of Probability and Statistics. Springer, New York, 2013.
  13. Rolski T., Schmidli H., Schmidt V., Teugels J. Stochastic Processes for Insurance and Finance. John Wiley $\&$ Sons., New York, 1999.