References
-
Bowers N.L., Gerber H.U., Hickman J.C.,
Jones D.A., Nesbitt C.J. Actuarial Mathematics.
The Society of Actuaries, Itasca, Illinois, 1986.
-
Buhlmann H.
Mathematical Models in Risk Theory.
Springer, Berlin, 1970.
-
Chudziak J.
On applications of inequalities for quasideviation means in actuarial mathematics.
Math. Inequal. Appl. 2018, 21 (3), 601-610.
doi: 10.7153/mia-2018-21-44
-
Chudziak J.
On existence and uniqueness of the principle of equivalent utility under Cumulative Prospect Theory.
Insurance: Mathematics and Economics 2018, 79, 243-246.
doi: 10.1016/j.insmatheco.2018.02.001
-
Denneberg D.
Lectures on Non-Additive Measure and Integral.
Kluwer Academic, Boston, 1994.
-
Gerber H. U.
An Introduction to Mathematical Risk Theory.
S.S. Huebner Foundation, Homewood Illinois, 1979.
-
Heilpern S.
A rank-dependent generalization of zero utility principle.
Insurance: Mathematics and Economics 2003, 33 (1), 67-73.
doi: 10.1016/S0167-6687(03)00144-6
-
Kałuszka M., Krzeszowiec M.
Pricing insurance contracts under Cumulative Prospect Theory.
Insurance: Mathematics and Economics 2012, 50 (1), 159-166.
doi: 10.1016/j.insmatheco.2011.11.001
-
Kuczma M.
An Introduction to the Theory of Functional Equations and Inequalities. Cauchy's equation and Jensen's inequality.
Birkhäuser, Berlin, 2009.
-
Páles Zs.
Characterization of quasideviation means.
Acta Math. Hungar. 1982, 40 (3-4), 243-260.
doi: 10.1007/BF01903583
-
Páles Zs.
General inequalities for quasideviation means.
Aequationes Math. 1988, 36 (1), 32-56.
doi: 10.1007/BF01837970
-
Rachev S. T., Klebanov L. B., Stoyanov S. V., Fabozzi F. J.
The Methods of Distances in the Theory of Probability and Statistics.
Springer, New York, 2013.
-
Rolski T., Schmidli H., Schmidt V., Teugels J.
Stochastic Processes for Insurance and Finance.
John Wiley $\&$ Sons., New York, 1999.