References
-
Alegre P., Blair D.E., Carriazo A.
Generalized Sasakian-space-forms.
Israel J. Math. 2004, 141, 157-183.
-
Alegre P., Carriazo A.
Generalized Sasakian space forms and conformal changes of the metric.
Results Math. 2011, 59 (3-4), 485-493.
doi: 10.1007/s00025-011-0115-z
-
Barros A., Ribeiro Jr E.
Some characterizations for compact almost Ricci solitons.
Proc. Amer. Math. Soc. 2012, 140 (3), 213-223.
doi: 10.1090/S0002-9939-2011-11029-3
-
Barros A., Batista R., Ribeiro Jr E.
Compact almost Ricci solitons with constant scalar curvature are gradient.
Monatsh. Math. 2014, 174 (1), 29-39.
doi: 10.1007/s00605-013-0581-3
-
Chow B., Knopf D.
The Ricci flow: An introduction. Mathematical Surveys and Monographs. 110,
American Mathematical Society, 2004.
-
Cho J.T., Kimura M.
Reeb flow symmetry on almost contact three-manifolds.
Differential Geom. Appl. 2014, 35, 266-276.
-
Derdzinski A.
Ricci solitons.
Preprint 2017 - arXiv:1712.06055v1.
-
Friedan D.
Nonlinear models in 2 + $ \epsilon$ dimensions.
Ann. Physics 1985, 163, 318-419.
-
Ghosh A.
Kenmotsu $3$-metric as a Ricci soliton.
Chaos Solitons Fractals 2011, 44, 647-650.
-
Ghosh A.
An $\eta$-Einstein Kenmotsu metric as a Ricci soliton.
Publ. Math. Debrecen 2013, 82 (3-4), 591-598.
-
Hamilton R.S.
The Ricci flow on surfaces. Mathematics and general relativity.
Contemp. Math., Amer. Math. Soc. 1988, 71, 237-262.
-
Kanai M.
On a differential equation characterizing a Riemannian manifold.
Tokyo J. Math. 1983, 6(1), 143-151.
-
Kenmotsu K.
A class of almost contact Riemannian manifolds.
Tohoku Math. J. 1972, 24, 93-103.
-
Marrero J.C.
The local structure of trans-Sasakian manifolds.
Ann. Mat. Pura Appl. 1992, 162, 77-86.
-
Perelman G.
The entropy formula for the Ricci flow and its geometric applications.
Preprint 2002. arXiv: math/0211159v1.
-
Pigola S., Rigoli M., Rimoldi M., Setti A.
Ricci almost solitons.
Ann. Sc. Norm. Super. Pisa Cl. Sci. 2011, 10 (5), 757-799.
-
Sharma R.
Certain results on $K$-contact and ($k,\mu$)-contact manifolds.
J. Geom. 2008, 89, 138-147.
-
Tashiro Y.
Complete Riemannian manifolds and some vector fields.
Trans. Amer. Math. Soc. 1965, 117, 251-275.
-
Yano K.
Integral formulas in Riemannian Geometry, Marcel Dekker, New York, 1970.