References
-
Antonova T.M., Bodnar D.I.
Convergence region of branched continued fractions of special form.
Approx. Theor. and its Appl.: Prog. Inst. Math. NAS Ukr. 2000, 31, 19-32. (in Ukrainian)
-
Antonova T.M., Sus O.M.
Necessary conditions of convergence for one class of two-dimensional continued fractions with complex elements.
Approx. Theor. and Rel. Probl.: Pr. Inst. Matem. NAS Ukr. 2015, 12 (4), 8-28. (in Ukrainian)
-
Baran O.E.
Some circular regions of convergence for branched continued fractions of a special form.
J. Math. Sci. 2015, 205 (4), 491-500.
doi: 10.1007/s10958-015-2262-3
-
Baran O.E.
Some convergence regions of branched continued fractions of a special form.
Carpathian Math. Publ. 2013, 5 (1), 4-13.
doi: 10.15330/cmp.5.1.4-13 (in Ukrainian)
-
Bodnar D.I., Bilanyk I.B.
Convergence criterion for branched contС–nued fractions of the special form with positive elements.
Carpathian Math. Publ. 2017, 9 (1), 13-21.
doi: 10.15330/cmp.9.1.13-21
-
Bodnar D.I., Bilanyk I.B.
On convergence of branched continued fractions of the special form in ungular domains.
Mat. Metodi Fiz.-Mekh. Polya 2017, 60 (3), 60-69. (in Ukrainian)
-
Bodnar D.I.
Branched continued fractions.
Naukova Dumka, Kyiv, 1986. (in Russian)
-
Bodnar D.I., Zatorskyi R.A.
Generalization of continued fractions. II.
J. Math. Sci. 2012, 184, (1), 46-55.
doi: 10.1007/s10958-012-0851-y
-
Bodnar D.I., Kuchminska Kh.Yo.
Development of the theory of branched continued fractions in 1996-2016.
J. Math. Sci. 2016, 231 (4), 481-494.
doi: 10.1007/s10958-018-3828-7
-
Bodnar O.S., Dmytryshyn R.I.
On the convergence of multidimensional $S$-fractions with independent variables.
Carpathian Math. Publ. 2018, 10 (1), 58-64.
doi: 10.15330/cmp.10.1.58-64
-
Bodnarchuk P.I., Skorobogatko V.Ya.
Branched continued fractions and its application.
Naukova Dumka, Kyiv, 1974. (in Ukrainian)
-
de Bruin M.G.
Convergence of Generalized $C$-fractions.
J. Approx. Theory 1978, 24, 177-207.
-
Dmytryshyn R.I.
Convergence of some branched continued fractions with independent variables.
Mat. Stud. 2017, 47 (2), 150-159.
doi: 10.15330/ms.47.2.150-159
-
Fürshtenau E.
Üeber Kettenbrüche höherer Ordnung.
Jahrbuchüber die Forschritte der Mathematik, 1876, 133-135. (in German)
-
Jones W.B., Thron W.J.
Continued fractions:Analytic theory and applications.
London; Amsterdam; Don Mills; Ontario; Sydney; To\-kyo: Addi\-son-Wesley Pub. Co., Inc, 1980.
-
Krukovskyi B.V.
On the theory of continued fractions of second class.
J. Inst. Math. NAS Ukr. 1933, 1, 195-206. (in Ukrainian)
-
Kuchminska Kh.Yo.
Two-dimensional continued fractions.
Pidstryhach Institute for Appl. Probl. in Mech. and Math. NAS of Ukraine, Lviv, 2010. (in Ukrainian)
-
Lorentzen L., Waadeland H.
Continued Fractions. Vol.1: Convergence Theory., 2d ed.
Amsterdam: Atlantis Press; World Scientific, 2008.
-
Perron O.
Die Lehre von den Kettenbrüchen. Bd.II:Analytiksch-funktinentheoretische Kettenbrüche., 3e aufl.
Stuttgart: B.G.Teubner Verlagsgesellschaft, 1957. (in German)
-
Siemaszko W.
Branched continued fractions for double power series.
J. Comput. Appl. Math. 1980., 6 (2), 121-125.
-
Skorobogatko V.Ya.
The theory of branched continued fractions and its application in computational mathematics.
Nauka, Moscow, 1983. (in Russian)