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PARABOLIC SYSTEMS OF SHILOV-TYPE WITH COEFFICIENTS OF BOUNDED
SMOOTHNESS AND NONNEGATIVE GENUS

The Shilov-type parabolic systems are parabolically stable systems for changing its coefficients
unlike of parabolic systems by Petrovskii. That’s why the modern theory of the Cauchy problem
for class by Shilov-type systems is developing abreast how the theory of the systems with constant
or time-dependent coefficients alone. Building the theory of the Cauchy problem for systems with
variable coefficients is actually today. A new class of linear parabolic systems with partial deriva-
tives to the first order by the time f with variable coefficients that includes a class of the Shilov-type
systems with time-dependent coefficients and non-negative genus is considered in this work. A
main part of differential expression concerning space variable x of each such system is parabolic
(by Shilov) expression. Coefficients of this expression are time-dependent, but coefficients of a
group of younger members may depend also a space variable. We built the fundamental solution
of the Cauchy problem for systems from this class by the method of sequential approximations.
Conditions of minimal smoothness on coefficients of the systems by variable x are founded, the
smoothness of solution is investigated and estimates of derivatives of this solution are obtained.
These results are important for investigating of the correct solution of the Cauchy problem for this
systems in different functional spaces, obtaining forms of description of the solution of this problem
and its properties.

Key words and phrases: fundamental matrix of solutions, Cauchy problem, Shilov-type parabolic
systems.
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INTRODUCTION

The definition of parabolicity formulated by G.Ye. Shilov [12] generalizes the definition
of parabolicity by I.G. Petrovskii [11] and extends considerably the Petrovskii’s class of the
tirst-order on time systems by the systems with constant coefficients with order different form
the parabolicity factor. The parabolic (by Shilov) systems were investigated, in part, in pa-
pers [2,4,6,7] containing the results on description of the classes of uniqueness and correct-
ness of the Cauchy problem, developing the methods of study of fundamental solution, rating
the correct solvability of the Cauchy problem at various functional spaces, and ascertaining
qualitative properties of solutions for such systems. However, these results concern to the sys-
tems with constant or time-dependent coefficients alone. The attempts to derive any results
for parabolic (by Shilov) systems with variable coefficients, which are space-dependent ones,
were unsuccessful, while it has been shown [5] that such systems are parabolically unstable to
changing coefficients.
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Interesting approach to expansion of the Shilov class of parabolic systems has been pro-
posed by Ya.l. Zhitomirskii [13] defining a new class of parabolically stable systems to varia-
tions of the lower coefficients. This class adds naturally to the Petrovskii’s class of systems with
variable coefficients and covers the parabolic (by Shilov) systems. These systems are referred
to as the Shilov-type parabolic systems with variable coefficients.

The Shilov-type parabolic systems of the p-th order are of the form

oru(t; x) = {Po(t;idx) + P1(t, x;i0x) yu(t; x), t € (0;T], x € R", (1)

where u := col(uy, ..., um), Po(t;idx) and P (t, x;i0y) are the matrix differential expressions of
the orders p and p;, respectively, with coefficients dependent on time t, and for P; on spatial
variable x as well. For that, the system

oru(t; x) = Py(t;idy)u(t;x), t€(0;T], x € R", (2)

is the parabolical (by Shilov) system with the parabolicity factor &, 0 < h < p, kind of # and of
reduced order py (see [4, p.72, p.133]), and p; satisfies the following conditions:

(A) O§p1<h—n<1—hy/p0>—(m—l)(p—h), 0<u;
(A)  0<p<h-n(l—p)—(m=1)(p—h), u<O0.

For the systems (1) Ya.l. Zhitomirskii has ascertained by the method of sequential approxi-
mations correct solvability of the Cauchy problem at the class of smooth bounded initial func-
tions for the case, when the coefficients of the differential expression for Py are constant, and
the coefficients of the expression P; are limited being dependent on x, alone functions, which
are differentiable up to some order.

Further elaboration of the Cauchy problem for the Shilov-type parabolic systems with vari-
able coefficients presumed construction of the fundamental solution of the Cauchy problem
(FSCP) and comprehensive investigation of it.

For the systems (1) of nonnegative kind u and the coefficients, which are boundedly con-
tinuous on t and infinitely differentiable on x, the FSCP has been derived and its main prop-
erties have been studied [8]. These results enable to develop the theory of the Cauchy prob-
lem [1,9,10] for such systems at spaces S of M. Gelfand and G.Ye. Shilov and, in part, to
prove correct solvability of the Cauchy problem with generalized initial conditions of kind of
the Gevrey’s ultra-distributions, to find out the form of classical solutions with generalized
boundary values at initial hyperplane, to study the properties of localization and stabilization
of the solutions, and to describe the sets of generalized initial functions for which the corre-
sponding solutions are the elements of the L. Swartz space S or any of spaces of .M. Gelfand
and G.Ye. Shilov.

In this paper, we continue the study of the systems (1) for 4 > 0 with coefficients of
bounded smoothness. We determine the conditions of minimal smoothness of the coefficients
with respect to the variable x, for which the classical FSCP exists, construct this solution and
investigate its main properties. These results are important for further development of the
classical theory of the Cauchy problem for parabolic systems and its unification.

1 AUXILIARY DATA

Let T be a fixed number from (0; +o0), IN be the set of natural numbers; N, := {1,...,m};
R" be the real n-dimension space; R := R1; Z!: be the set of all n-dimension multi-indices,
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Z. :=7!;i-imaginary unit; (-, -) — scalar product at the space R”; ||x| := (x, x)l/2 X € IR";
x+iyl = (2 + )% {xy} C R [(ay)]iy] = amax lagjl; Jzl4 = lz] + ..+ |zal, 2 =

2 itz e RY, 1€ Z; Ty = {(5x)] t € M,x € R"}, M C R.
We will consider here only the systems (1) with u > 0, where the differential expressions
for Py and P; are of the form

0(ti0x) = Y Agr(dk, Pi(t,xidx) = Y Apx(tx)ok,
k|+<p [kl +<p1

Nk Ij m Nk Ij m . .
where Ag(t) := ilkl+ (aOk(t)>l - Apg(t;x) = ilkl+ (alk(t;x))l _ are matrix coefficients.
/7 ’]: 4 ’]:
By G(t,7;-), 0 < T < t < T, we denote FSCP of system (2). It is known that G(t,7;-) =

F [®L(¢)] (t,T;-), where F[] is the Fourier transformation operator, and © (-) is a matriciant
of the corresponding Fourier duality of the system. The following statement is proper [1,6].

Proposition 1.1. Forall T > 0 there exists 6 > 0 and for all k € Z' there exists c > 0 such that
forallt € (t;T|, T € [0;T) and {x,} C R" takes place

1
n+ |k _g(Ix=2l ) Ta
ntiaty o(H=5h) 3)

105G (t, ;0 — &) < c(t— 1)~ ,
wherey := (m —1)(p —h) and a := u/py.

Here, we consider systems (1), which satisfy, in addition to condition (A), the following
condition:

(B) the coefficients aéj (1), allj . (t; x) are continuous in the variable ¢ uniformly with respect to
x, differentiable with respect to the variable x up to the order a. inclusively, and bounded
together with their derivatives by complex-valued functions in a ball ITjo, 7.

n [8], FSCP of system (1) was constructed in the form
Z(t, 57,8 =Gt T;x — &) +W(t,x;1,8), (tx1,8) €113, 4)

where I12 := {(t,x,7,8)|0< T <t < T,{x,¢} C R"} and

Wit x7,) /dﬁ/Gtﬁx— (B, ;7 )y ©

Here -
O(t,x;T;¢) = Z (t,x;7,8), (6)
where )
Ki(t,x;7,8) = Pl(t x;104)G(T, 5 x —§),
7
Ki(t,%7,8) /dﬁ/KltX5y)Kz1(/3%T€')dy,l>1 7

In this case, it was established that condition (A) and the boundedness of the coefficients of
system (1) ensure the absolute uniform convergence of the functional series (6) for all {x,{} C
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R", t € (1;T], and T € [0,T). Moreover, its sum ® and the iterated kernels K; satisfy the
estimates

1
_s5 (Ix=¢\ T«
Bt 17,8)] < eyt — o (a1 (G550) (8)

-1
Ki(t, %7, 8)] < ¢ ( c(je) B(ao, jao )
j=1

)
x|\ T
« (t _ T)ltxof(Htxn)e_‘s( —(I-1)e )(( T)zx) = (0;1),

4

with the estimating constants independent of ¢, 7, x, and ¢. Here
ag:=1+an—(n+p1+7v)/h>0

and B(+, -) is the Euler beta-function.

We note that estimates (3) and (8) for {x,{} C R"and 0 < 7 < t < T guarantee the absolute
convergence of the integral, by which the potential W is determined. Thus, the matrix function
Z(t,x; 7, ¢) is properly determined by formula (4) on the whole set I'2.

Completing this item, we present the following estimates from [3], which will be of impor-
tance in what follows:

1 1
™™} ey

< ; (10)

DTG g e (B
, 0>0, 11
/e ((t_ﬁ>(ﬁ_T))aﬂ < (t_T>1xn > ( )

(here, {x,y,¢} CR", € (1;1),0<T<t<T,e€ (0;1),and § > 0, and the quantity c,
depends only on ¢).

2 PROPERTIES OF FSPC

First, we estimate the derivatives of the iterated kernels K.

According to representation (7), the smoothness of the kernel K; (¢, x; T, ) in the spatial
variables x and ¢ is determined, respectively, by the smoothness of the coefficients of system
(1) and the function G(¢, T; x — ¢). Therefore, there exist the derivatives 828,‘11(1 for{r,q} C Z%,
||+ < &, and the following equality holds:

q
Atk (txT,8)= Y Y. C (a;Al,k(t;x)) <a'(‘:12)ﬂ*lc(t, T;x — g)) ,

k| +<p11=0

where C,l7 is a binomial coefficient. From whence, with regard for condition (B) and estimate
(3) for {r,q} C Z", |q|+ < &, (t,x;7,&) € T13, we get

1
ntpitrtlrgly ( x|l ) jry
T h e o (t—7)%

957Ky (t,%;7,)| < crglt — )" (12)
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(here, the estimating constants are independent of ¢, T, x, and ¢).
For ] > 1, we will use the representation

fq
Ki(t,x;T,8) = /d,B/Kl(t,x;,B,n+§)K1_1(5,17+§;T,§)d17
T R

(13)

t
+/dlB/Kl(t’x;ﬁlx_Z>Klfl(,B,x—Z;T,€>dZ, H o t—|2—’l’.
o R7?

According to it,

ty
GpalK (tx;T,8) = ). O / dp / (agaiKl(t,x;ﬁ,HC))

|1’1‘+§‘}’|+ T Rn

t
" (aganlfl(ﬁ,nJrC;r,é’)) g+ ), C;“/dﬁ/ (1K (t,x;8,x — 2))
‘q1‘+§|‘ﬂ+ t R"
X <82817Q1K1_1(/3,x —z;r,g’,‘)) dz, |ql+ < as, (t,x,7,8) € HZT.
(14)

Hence, the estimation of |828ZKl(t, x;7,8)| is reduced to that of the expressions
953K (b, 17,7+ ©)), 02K (657, x — )], [95K1 1 (b + &, 8], 190K (6% — 27, ).

In view of the boundedness of aiallj; ((t:x), |q]+ < &y, and estimate (3), for all {g,7} € Z',
9]+ <as, {x,7,} €eR", t € (;T],and T € [0; T), we have

\agaZKl(t, T, +E)|<m Z Z Cgl }ailAllk(t;x)‘ \a’(jj;igflc(t, Tx—1n—2C)|

[kl+<p1 |91+ <lql+

1
_ ntprtytlrtgly ,5( HX*'?*CH) T—a

< eyt — 1) P )T
(15)
01Ky (t, %7, x — )] = a,i( Y An(tx)dkG(t T g)) ‘ <m BZALO(t;x)’ ‘G(t,r;é)‘
\k|+SP1 (16)
; Izl )™ wipty _g( L YT
< oyt — T)_%eﬂs(ﬁfﬂ”‘ <cg(t—71)" h e TNETF
We now estimate the expression }agKl(t, n+&7T,¢)|. Since
Kb+ 51,8 = Y %Aty + )Gt Ty), (tx1,E) €117, (17)

[kl +<p1

we have, according to condition (B), that the iterated kernels K;(t, 17 4 &; T, {) are differentiable

with respect to the variable & only to the order .. This fact and (14) imply that 97K, (t, x; T, &),

|9« < ax, is also a function differentiable with respect to ¢ only to this order a..
Representation (17) and estimate (3) yield

1
n+p1+y _ 17l T
et o ()

02K (11 + &7, 8)| < et —7) (18)
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We note that

t
EKZ(trn+€;Tr€) :ag(/dﬁ/Kl(tlﬂ+CI,Bry>K1(ﬁ/err€)dy>
T R”

Let us change the order of integration in the last integral by the formula y = z + ¢. In view of
estimates (18) and (11) and the equalities

t
[ (¢ = B)(B =) = (¢ 7)™ Blao, a0) (19)
and
Kilt,n+ 81,24 8) =0 Ki(t, (n —2) + 7, 0) —_—
we get

|05Ka(t, 7 + &7, )|

<m rl/dﬁ/

a“1<1 t, 17—|—§ﬁz—|—€)‘

o K (B2 + &7, 8)|dz

|71\+<\ |+
t 1 1
_n+p1+y .y ”’Y*Z\i 1*N+ HZH“ T-a
<m Z G C1,r1€1,(r—1) / )) ! /e <((t7ﬁ) ) (( - ) >d2d5
Iril+<[rl+ Rn
lnl T
n+p1+y _ _ 7 —a
< 2,(e)Blao, ao) (t — )00~ 7 e 00 WMo ™ e (0;1).
(20)
By reasoning analogously step by step, we arrive at the inequality
1
n —5(1—(1— Il ) T==
02K (t, 1+ &7, 8)| < cpple (HB o, g ) ( — 1)U Dro— "5 ,=o (1= De) () @

which is satisfied for all {#,{} C R", |r|y < a,, 0 <7<t <T,ec (0;1),and! € N\ {1}
and, hence, until the existence of such number [, for which

L1 NI =
0LK (7 + & T,8)| < e (e <HBa0,]oc0> (1= (1=1)e) () 22)

(here, the quantities ¢; ,(¢) > 0 do not depend on the variables f, 7, %, and ¢, which vary in the
above-indicated way).
Since
ALK (1, %7, + €) = LIKI(t, %7, ) L__H
and
LK (t,x — 2;7,8) = DKty T, g))

y=x—z
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then the expressions agaZKl(t, x; T, +¢E), BEBZKZ(t, x—z71,¢&) and BEBZKZ(t, x; T, ¢) are of the
same type. Therefore, with regard for representation (14) and estimates (15), (16), (21), and (11),

we have

fy

|0201Ks (8, x; 7, 8)| < m2’+‘7+< Y. CrugCiir—r) /(t —B)”

]+ <Ir[+ T

ntprty+in+aly
h

1 1
[x—n—¢|I\ T—a 7l \ T—a
o (ﬁ _ T)_71+Ph1+’Y /e—5<< (tJI]S)"‘ ) +((/3l1‘r)06) )dﬂd’B + Z Cq c, (4-a1)
1 A4—Y1
R 91|+ <lql+
t Izl [[x—z—¢]|

X/(ﬁ_T)W(t_ﬁ)Hr’hm/e—é((uw)”Jr(w)”)dzdﬁ)

tp R"

1
[x—¢|| } T-a
< m2lr ke ce 1" ) (=) (t—T)m< Y. CraCi—r)
|4 <Irl+

t

X /(t - IB)Dm_ (:3 - T)lxo_ld:B + Z 01 Cr,(g—q1)
T lg1l+<lql+
t

< [t—proip—o)

f1

n+pr+Hy+Hlr a4
h

n+pq +'y+|r+q7q1\+
h

@B), Irl+ < aelgls < aee € (01).

In view of the estimates

t
/(t B ﬁ)minwwv;\rﬁqu (ﬁ )rXo 1dﬁ < 2| 1 q\+( B T)Zao— (1+|r1+hql+) B((Xo, 060)

T

and

t
/(t B I[g)ﬂéo—l(lg B T)Dm_n+r?1+7+}llr+ﬂ*ﬂl\+ d,B < 2\r+q;ﬂ1|+ (t _ T)2a07(1+\r+q;ﬂ1\+)B(“0, 010),

f1

we get the inequality

_ [r+ql+
9K (1,7, 8)| < (e — o (b5

By continuing stepwise the process of estimation, we obtain
q log— (1+an+m)
|0RTK (1, 27, )| < /8t — 7)™ ),

|+4]
9L (1,37, 8)| < (e — 7yl (1t )

Tl

< 00009 (=5) ’“( B(ao, jao) ),

—_

~
[

forall |r|; < as, |q|+ <ay, {x,} CR",0<T<t<T,ec (0;1)and! € N\{1}.

(23)

(24)
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Let us pass to the estimation of the expression }BEBZKZ (t,x;7,¢)|, which will be suitable for
the establishment of the differentiability of the matrix function ® with respect to the spatial
variables. Directly from (24), we arrive at the existence of a number [* such that

1
61— (1F—1)e) (=gl 1= 1]
|050%K- (t, x;7,8)| < e 6(1=(1"=1e) (=54 < I B(oco,joco)>
j=1
Let us set I := max{l,,I*}, I_ := min{l,,I*}, where I, is the corresponding number from

(22), € := 6y i =6(1— —) r« > 2, Tp := max{1, T}, and

1
V*l+,

1— 1—

1
e max <cq1,,C (o, jao) ), Cra,Cr K, jo ,
S ey vy U (€ 1 0-j%0) ) €ras i ] (20, o)

—_

IX
[

s 1= c(Tp)"*~"~. Then (21) and (24) imply that, for all {x,& 7} C R", 0 < 1 <t < T,
‘1"_._ < ay, and ‘q’-i- <

1
llx=¢ll) =

1
=\ = il ) T—=
‘agaZKu(t,x;T,é’)} < cue 5*(@77)%) 1 )1 .

2K1+(t' n+a&T, C)} < C*eﬂs* ( (t=1)%

In view of this result, estimate (10), the equality

1
o) Ty _ / ool T gy . E
/e (t—ﬁ)“" e z =: b < +o0,

R” R”

representation (14), and inequalities (15) and (16), we obtain

|0:Ky, 41 (b + 87,

< C”/d,[%/}a”Kl b+ 8Bz + O K, (B2 + &, 8)|dz
\71\+<|V\+

—o;((—””*zl)ll_u(—u—'z'a)llT“> _A(HfifZH)llfa dz

<m?( Y o) / (=g [ T Tor) ) i) T2 g

i p
Ir1l+<|rl+ T R
1
= _ Il ) T==
< mcYEc?B(ag, 1) (t — T)™e 5*<(tjr>“) , )= Y, oy

[r1]+ <|r|+

(25)
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|0%0%Ky, 1(t, x; T, (3)}

< Y C“/dﬁ/ 01K, (8, x; B, + €03} "KL, (B, + &7, 8)|dy

[r1]+<|r|+

+ ) C‘“/dﬁ/}aqlKltxﬁx 2)9de MK, (B x =z, §)|dz

lq1]+<lql+ h

< mcﬁ( y /(t _ ﬁ)txr(H%)

Inl+<rl+ 7

1 1 1
OB ES) a

]Rﬂ
t . . 1
_ —5, 2l Y T=a y (lx=z=ClyT=a ) 5 ¢ Jz) \T-a
o Lo fampet [T ) e
lq1]+<lq]+ h R"
1t
~ g (Ix=El) T-w |+l
et o 5 o))
T Iral+<Ir[+
eg) ) T I+l il
~ _ X— —a r+ 1+
< m2Be (655 (t—T)'XOB(on,l)((Z PL e > +C")
Iraf+<[rl+
- Ir+a] gy g (Jx=g]yT-=
< mcglqciE(ZTo) +1?+B(1xo,1)(t—r)“0’ e 6*((H>“) , c9,q = ¢+ cq.
Applying the method of induction, we can verify firstly the validity of the estimate
‘agKl++l(t/ U) + é/' T, é) ‘
1
~ s (Al YT ]
< co(mc2c, E(t — 1)%)le 5*<<tff>“) <HB(0¢0,1 —l—joco)),
j=1
and, hence, the estimate
[r+4] [r+4]
91K, 411, 357,8)| < . (mcdge.B(2Ty) ”*) (f — 7)lo—"9E

s (L2l T 11
X e 5*<(t—r)a)1 (HB((X(),l—i-]'lX())),

j=1
for |4 < ay, |ql+ <a., (t,x7,¢) € [12and | € N\{1}.
The following propositions hold true.

(26)

(27)

(28)

Lemma 2.1. The matrix function ®(t,x;7,¢) on the set 11 is a function differentiable with
respect to each of the spatial variables x and ¢ to the order . inclusively, and their derivatives

satisfy the following estimates:

L
Sl (t,x;7,8)| < oyt — o (rent 5 () T

4

(29)
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3Lty + & 7,8)| < eaft — o rame = (aem) gy o (30)

(here, the estimating constants c1, c2, and 6, are independent oft, T, x,¢, 7).

Proof. In any way, let us fix a point (xo; &) from R?", and consider a ball ]K((Sxo;éo) with radius
0 > 0, which is centered at the point (xo; {p), in this space. Then, in view of structure (6) of the
function ® and the differentiability of the iterated kernels K; with respect to spatial variables
on IR?" to the order &, inclusively, we can conclude that, in order to prove the differentiability
of the matrix function @ at the point (x; o) to the indicated order, it is necessary only to prove
the uniform convergence of the formally differentiated series (6) in the variables x and ¢ on the

set ]K((Sxo'é'o)’ 0 >0(ateveryfixedtand 7, 0 <7 <t <T):

(e 9]

2 PIK(E x5 T,8), [l < lgle < a (31)

Directly from estimates (24) and (28) and the equality

I—

! (M)’
B(wg, 1+ jao) 7,
1 ) = F(1 1 Iag)

where I'(+) is the Euler gamma-function, for {r,q} C Z", |r|+ < ay, |q|+ < ay, and (¢, x;7,¢) €
HZT, we have

l+ o0

Yotk v o) < X [tk v o)+ Y
I=1

A (%7, 8) ‘

=1 l:l++1
Iy |r+q| 00 ~ [r+q| [r+q]
< ¢, (Z(t_,()ltxo(1+rxn+hq+) + Z (mCOqC*E(ZT()) Ij+)l(t—T>llX07 Ij+ (32)
=1 =1

=1 s (llx=2]l = r lx—¢]] =z
( B(ao, 1+ jaro) )> (@) T < g (¢ - gy (e ) o0 (R T
j=1

Frow here, we get the uniform convergence of series (31) in x and ¢ and, hence, the validity
of estimates (29).

Due to the corresponding estimates (21) and (27), we can verify analogously the validity of
estimate (30). The lemma is proven. O

Lemma 2.2. The volumetric potential W(t, x;T,{) on the set HzT is a function differentiable
with respect to each of the spatial variables x and ¢ to the orders «. + p1 and . respectively
inclusively. In this case,

ARIW(t, %7, €) = ZCl/dﬁ/alathﬁx y— )3 DBy + &1, E)dy

TR (33)

+ / dp [ G (t,Bix — )o@ (B YT, Oy, gl < pulrls < e,
H R"
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r tl
AW (7, §) = ZCZ/dﬁ/&éBZG(t,ﬁ;x—y—g)ag_lcb(ﬁ,y—l—é,‘;r,g’f)dy
=L

_ (34)
+ / ap [ 3G (t, Bl (B x — ;T )y, Irl <
tq n

|+ = p1, p1 < lql+ < ax +p1.

Proof. For |q|+ < py and |r|+ < a., we use the representation

ty
Wit x7,8) = / ap / G(t,Bix —y = )O(By + &7, )y

+/dﬁ/Gtﬁx— (B, v, E)dy

From here, by the formal d1fferent1at10n under the sign of integral, we obtain equality (33).
Hence, in order to substantiate the validity of equality (33), it is sufficient to prove the uniform
convergence of the following integrals in the variables x and ¢ on R?":

M, %7,0) /dﬁflagaquﬁx v =0 BB,y + T, 2)ldy, Il < Il

T R” (35)

t
(x5 0,8) = [ dp [ 016 Bix — )0 (B, yi T, D)ldy.
t R"
This convergence becomes obvious, if we take condition (A) and the following estimates into

account for {x,¢{} CR"and0 <71t <t < T:

1
lx=2]| ) T-a
Irlq(tl,x 7,¢8) < ccoEe” ( = T>“) (t—t1)"
h (36)
< [(B=o)ap, il < Irl-;

T

nty+|l+ql4

1
llx=¢ll ) T-w n Ir| —lq|
Tt x501,) < cerBe ) 1y - ) I [ ppo e titap @)
f
These estimates follow directly from (3), (29), and (30).
We now prove the validity of formula (34). For this purpose, we fix any k € Z'} such that
|k|+ = p1. Then, according to (33) for p; < |q|+ < ax + p1 and ||+ < a,, we have

FOIW(t,x;T,8) = an‘f k/d,[%/a G(t, B;x — y—@)ag_l©(ﬁ,y+§;T,§)dy

+o1” k/dﬁ/ak (t, B;1)0z®(B,x —m;T,8)dy, (t,x7,6) € I13.

f
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Hence, it remains to substantiate the possibility to introduce the operation a?f" under the
signs of the corresponding integrals. In other words, we should prove the uniform convergence
in x and ¢ of the following integrals on R for0 <t <t<T:

51
[ 8 [ G Bix =y — )08,y + &, D)y,
T R”

t
/ dp / G(t, B;1)asdl (B, x — ;7 8)dy.
i R

By reasoning similarly to the case of integrals (35) and using estimates (3), (29), and (30),
we get the necessary convergence of the indicated integrals. The lemma is proven. O

The main result can be formulated as the following proposition.

Theorem 1. Let the system (1) satisfy conditions (A) and (B). Then the corresponding function
Z(t,x;T,¢) defined by equality (4) is a function differentiable with respect to each of the spatial
variables x and ¢ on the set I1% to the orders a, + p; and a respectively inclusively, and exists
§>0forall{r,q} CZ", |q|+ < as+ p1, 1]+ < ay, existsc > 0 forall (t,x;7,¢) € 115

1
771+\r+lq\++’y _5( |X*§|) T-a
1 e ;

]828ZZ(1‘, xT,6)| <c(t—1) (=) (38)
%
v o (el )T
EZ(tx +&7,8)| < crlt — )i 1<<”’ ) : (39)
where k|4 < a,, 0 < T <t <T, {x¢} CR" B := { 2’ 2;8’ (here, the estimating
0r

constants are independent of t, T, x, and ¢).

Proof. With regard for structure (4) and the infinite differentiability of the function G(t,T;¢)
with respect to the variable ¢, the smoothness of the function Z(t, x; T, ¢) in the variables x and
¢ becomes obvious directly from the assertion of Lemma 2.

Let |g]+ < p1 and |r|;+ < as. Then, according to (33), we get

.
0:01Z(t, x;7,8)| < |8::%G(t, Tx— &)+ Y. CTM(ty, x1,8) + Tyt x; 1, 8).
1=0

From here, by using estimates (3), (36), and (37), we obtain assertion (38).

In a similar way, by using formula (34), we verify the validity of assertion (38) also for
pr < lqls < @ and |l < .

Then, according to estimates (3) and (30), we have

t
Yiltwim,) = | [ap [ Gt pix—0)50(p,L + & 0)d
T R”

< CC2T/(t — 5>txo+p71*1(5 _ T)aolR/n exp{ B 50{ <ytx_;ﬁ€)|lx>ﬁ

gl dydp
(-or) Hpe o=

8o :=min{J, .}, |k|+ < as.
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Using estimate (11) and equality (19), we get

1

)1“’ e€ (0;1),

e 51— < T
Yi(t, 2,7, 8) < cet — T)"‘O_%e NS
where |k|;+ <., 0 <71 <t<Tand {x,{} C R". From whence, with regard for inequality (3)
and the representation

t
Z(t,x +¢;7,8) = G(t,T;x)+/d/5/G(tlﬁ;x—C)q)(ﬁrCﬂLC;ﬁ,C)dC,
T R"

we arrive at estimate (39).
The theorem is proven. O
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Airosuenko B.A., Yarypsmm I'M. Iapaboriuni cucmemu muny Ilunoea i3 koegpiyienmamu 06 mexceHoi

enadkocmi ma Heeid e mHum podom // Kapnarcexi mateMm. myba. — 2017 — T.9, Nel. — C. 72-85.

Ha BiamiHy Bia mapaboaivrmx 3a [TeTpoBcbkmm cucreM, mapaboaivdi 3a [Inaosum cucremu, B3a-
raai Kaxyun, € mapaboAiqHO HeCTiIKIMM A0 3MiHM cBOIX KoedpinieHTiB. CaMe TOMy CcydJacHa Teopis
3aaaui Komri aast ccteM kaacy IlnaoBa po3BrHeHa Ha piBHI cCTeM i3 cTaamMu, abo 3aAeXKHIMU AU-
1Ie Bia vacy t koedimienTamu. ITpobaema mobyaosm Teopii 3apaui Komri Aast Takumx cycTeM i3 3MiH-
HyMM KoedpillieHTaMM AOCi 3aAMIITAETHCS BIAKPUTOO. Y AaHil po60Ti po3rASIHYTO HOBIMI KAAC AiHili-
HIIX TTapabOAIUHIMX C1CTeM PiBHSIHB i3 YaCTMHHMMM ITOXiAHMMM TIEPIIIOTO TTOPSIAKY 3a ¢ i3 aMiHHEMMY;
KoedpillieHTaMM, SIKMI IIOBHICTIO OXOTIAIO€ KAac IlImaoBa cucTeM 3 KoedpillieHTaMy, 3aAeXKHUMM BiA, ¢
Ta HeBiA'eéMHMM poAOM. ['0AOBHA UacTMHA AMdpepeHIIiaAbHOTO Bpa3y CTOCOBHO IIPOCTOPOBOI 3MiH-
HOI X KOXHO] Takoi cucTeMy € napaboaiusmm 3a IlInaoBum Brpas3oM, KoedpillieHTH SKOTO 3aAeXKaTh
BiA t TOAI, SIK KOedpillieHTV IPyIIM MOAOAILIMX UAE€HIB MOXYTb 3aAeXKaTH 1ile 1 Bia IPOCTOpOBOi 3MiH-
Hoi. MeTOAOM IIOCAIAOBHOTO HaOAVKEHHS TO6YAOBaHO (PYHAAMEHTaABHIMI PO3B’s130K 3aaaui Komi
AASI CHCTeM i3 IbOTO KAacy. 3’ siCOBaHO YMOBM MiHIMaABHOI TAAAKOCTI Ha KoedpillieHTM crcTeMM 3a
3MIiHHOIO X, 32 SIKMX iCHye (pyHAAMEeHTaAbHMI PO3B’ 30K, AOCAIAXKEHO JIOT0 TAAAKICTD Ta OAEPXKAHO
OLIIHKM IIOXiAHMX IIbOTO PO3B’sI3KY. 3a3HaueHi pe3yAbTaTy € BaXXAMBMMM, 30KpeMa, AASL BCTAHOBAE-
HHSI KOPEeKTHOI po3B’s13HOCTi 3apaui Koliri AAs Takmx crcTeM y pisHMX (pyHKITIOHAABHIX IIPOCTOpPaX,
oAep>kaHHI popM 306pakeHHsI pO3B’sI3Ky i€l 3aAadi Ta AOCAIAXKEHHI JI0T0 BAACTUBOCTEIL.

Kontouosi cnosa i ¢ppasu: dpyHAaMeHTaAbHa MaTpUIIS po3B’s3kiB, 3apava Korri, mapaboaiuni cu-
cremu tuny [nnosa.



