References

  1. Aliprantis C., Burkinshaw O. Principles of real analysis. Acedemic Press, London, 1998.
  2. Apostol T. Mathematical analysis. Addison-Wesley, Boston, 1975.
  3. Barvinok A. A Course in convexity. In: Graduate studies in mathematics, 54. AMS, 2002.
  4. Beran L. Orthomodular lattices: algebraic approach. In: Mathematics and Its Applications, 18. D. Reidel Publishing Company, Dordrecht, 1985.
  5. Berberian S.K. Introduction to hilbert space. Oxford University Press, New York, 1961.
  6. Bessenyei M., Pales Z. A contraction principle in semimetric spaces. arXiv:1401.1709, 2014.
  7. Besso D. Teoremi elementari sui massimi i minimi. Annuari Ist. Tech. Roma 1897, 7-24.
  8. Bienaymé M.J. Extraits des procés-verbaux. Bulletin Société philomatique de Paris 1840, 67-68.
  9. Blumenthal L.M. Distance geometries: a study of the development of abstract metrics. The University of Missouri studies 1938, 13 (2).
  10. Blumenthal L.M. Theory and applications of distance geometry. At the Clarendon Press, Oxford, 1953.
  11. Bollobás B. Linear analysis. An introductory course. Cambridge University Press, Cambridge, 1999. doi: 10.1017/CBO9781139168472
  12. Bottazzini U. The Higher calculus: a history of real and complex analysis from Euler to Weierstrass. Springer-Verlag, New York, 1986.
  13. Bourbaki N. Les structures fondamentales de lánalyse. In: Éléments de mathématique, 13. Hermann & Cie, Paris, 1939.
  14. Brenner J.L. Limits of means for large values of the variable. Pi Mu Epsilon J. 1985, 8 (3), 160-163.
  15. Brown J.I., Watson S. The number of complements of a topology on n points is at least $2^n$ (except for some special cases). Discrete Math. 1996, 154 (1-3), 27-39. doi: 10.1016/0012-365X(95)00004-G
  16. Bruckner A.M., Bruckner J.B., Thomson B.S. Real analysis. Prentice-Hall, Upper Saddle River, N.J., 1997.
  17. Brunschwig J., Lloyd G.E.-R., Pellegrin P. A Guide to greek thought: major figures and trends. Harvard Univ. Press, 2003.
  18. Bryant V. Metric spaces: iteration and application. Cambridge Univ. Press, Cambridge, 1985.
  19. Bullen P.S. Averages still on the move. Math. Mag. 1990, 63 (4), 250-255.
  20. Bullen P.S. Handbook of means and their inequalities. In: Mathematics and Its Applications, 560. Springer Netherlands, 2003. doi: 10.1007/978-94-017-0399-4
  21. Burstein D., Ulitsky I., Tuller T., Chor B. Information theoretic approaches to whole genome phylogenies. In: Miyano S., Mesirov J., Kasif S., Istrail S., Pevzner P.A., Waterman M. (Eds.) Proc. 9th Annual Intern. Conf. ``Research in Computational Molecular Biology'', May 14-18 2005, Lecture Notes in Computer Science 3500, Springer, Heidelberg, 2005, 283-295.
  22. Carothers N.L. Real analysis. Cambridge Univ. Press, Cambridge, 2000.
  23. Cauchy A.-L. Analyse algebrique. In: Cours D'Analyse de L'école Royale Polytechnique, 1. Debure fréres, Paris, 1821. (in French)
  24. Chatterji S.D. The number of topologies on $n$ points. Technical Report N67-31144, National Aeronautics and Space Administration, 1967.
  25. Choquet G. Theory of capacities. Annales de l'institut Fourier, 1954, 5, 131-295, 1954. doi: 10.5802/aif.53
  26. Cohn P.M. Basic algebra. Groups, rings and fields. Springer, 2002.
  27. Colin A., Franzosa R. Introduction to topology: pure and applied. Pearson Prentice Hall, New Dehli, 2008.
  28. Comtet L. Recouvrements, bases de filtre et topologies d'un ensemble fini. Comptes rendus de l'Acade'mie des sciences 1966, 262, A1091-A1094.
  29. Comtet L. Advanced combinatorics: the art of finite and infinite. D. Reidel Publishing Company, Dordrecht, 1974.
  30. Copson E.T. Metric spaces. In: Cambridge tracts in mathematics and mathematical physics, 57. Cambridge Univ. Press, London, 1968.
  31. Corazza P. Introduction to metric-preserving functions. Amer. Math. Monthly 1999, 104 (4), 309-323.
  32. Costa M., Castro M., Rowstron A., Key P. Pic: Practical internet coordinates for distance estimation. In: Proc. 24th Intern. Conf. ``Distributed Computing Systems'', 2004, 178-187. doi: 10.1109/ICDCS.2004.1281582
  33. Crammer K., Kearns M., Wortman J. Learning from multiple sources. In: Scholkopf B., Platt J., Hofmann T. (Eds.) In: Proc. Conf. ``Advances in Neural Information Processing Systems'', 2006, Neural information processing series 19, 2007, 321-328.
  34. Crammer K., Kearns M., Wortman J. Learning from multiple sources. J. Mach. Learn. Res. 2008, 9, 1757-1774.
  35. Crossley M.D. Essential topology. In: Springer Undergraduate Mathematics Series. Springer, London, 2005. doi: 10.1007/1-84628-194-6
  36. Czerwik S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis 1993, 1, 5-11.
  37. Davis S.W. Topology. McGraw Hill, Boston, 2005.
  38. Dedekind R. Ueber die von drei moduln erzeugte dualgruppe. Math. Ann. 1990, 53 (3), 371-403. doi: 10.1007/BF01448979
  39. Deza E., Deza M.-M. Dictionary of distances. Elsevier Science, Amsterdam, 2006.
  40. Deza M.-M., Deza E. Encyclopedia of distances. Springer-Verlag, Berlin, Heidelberg, 2009. doi: 10.1007/978-3-642-00234-2
  41. Deza M.-M., Deza E. Encyclopedia of distances. Springer-Verlag, Berlin, Heidelberg, 2014. doi: 10.1007/978-3-662-44342-2
  42. DiBenedetto E. Real analysis. In: Birkhäuser Advanced Texts. Birkhäuser, Boston, 2002. doi: 10.1007/978-1-4612-0117-5
  43. Dieudonné J.A. Foundations of modern analysis. Academic Press, New York, 1969.
  44. Euclid. Elements. circa 300BC.
  45. Evans J.W., Harary F., Lynn M.S. On the computer enumeration of finite topologies. Commun. ACM 1967, 10 (5), 295-297. doi: 10.1145/363282.363311
  46. Fagin R., Kumar R., Sivakumar D. Comparing top $k$ lists. SIAM J. Discrete Math. 2003, 17 (1), 134-160. doi: 10.1137/S0895480102412856
  47. Fagin R., Kumar R., Sivakumar D. Comparing top $k$ lists. In: Proc. of the ACM-SIAM Symposium on Discrete Algorithms, 2003, Soc. Industrial Appl. Math., 28-36.
  48. Fréchet M.R. Sur quelques points du calcul fonctionnel (on some points of functional calculation). Rendiconti del Circolo Matematico di Palermo 1906, 22, 1-74. (in French)
  49. Fréchet M.R. Les Espaces abstraits et leur théorie considérée comme introduction a l'analyse générale. In: Borel series. Gauthier-Villars, Paris, 1928.
  50. Galvin F., Shore S.D. Completeness in semimetric spaces. Pacific J. Math. 1984, 113 (1), 67-75. doi: 10.2140/pjm.1984.113.67
  51. Michael C. Gemignani M.C. Elementary topology. Addison-Wesley, London, 1972.
  52. Gibbons J.D., Olkin I., Sobel M. Selecting and ordering populations: a new statistical methodology. John Wiley & Sons, New York, 1977.
  53. Giles J.R. Introduction to the analysis of metric spaces. Cambridge University Press, Cambridge, 1987.
  54. Haaser N.B., Sullivan J.A. Real analysis. Dover Publications, New York, 1991.
  55. Hahn H., Rosenthal A. Set functions. Univ. New Mexico Press, 1948.
  56. Halmos P.R. Measure theory. D. Van Nostrand Company, New York, 1950.
  57. Halmos P.R. Naive set theory. D. Van Nostrand Company, Princeton-New Jersey, 1960.
  58. Hardy G.H., Littlewood J.E., Pólya G. Inequalities. Cambridge University Press, Cambridge, 1952.
  59. Hausdorff F. Grundzüge der mengenlehre. Von Veit, Leipzig, 1914.
  60. Hausdorff F. Set theory. Chelsea Publishing Company, New York, 1937.
  61. Heath R.W. A regular semi-metric space for which there is no semi-metric under which all spheres are open. Proc. Amer. Math. Soc. 1961, 12 (4), 810-809. doi: 10.1090/S0002-9939-1961-0125562-9
  62. Heinonen J. Lectures on analysis on metric spaces. In: Universitext. Springer-Verlag, New York, 2001. doi: 10.1007/978-1-4613-0131-8
  63. Hoehn L., Niven I. Averages on the move. Math. Mag. 1985, 58 (3), 151-156. doi: 10.2307/2689911
  64. Jensen J.L.W.V. Sur les fonctions convexes et les ine'galite's entre les valeurs moyennes. Acta Math. 1906, 30 (1), 175-193. doi: 10.1007/BF02418571
  65. Jiménez R., Yukich J.E. Statistical distances based on Euclidean graphs. In: Recent Advances in Applied Probability. Springer US, 2005. 223-240. doi: 10.1007/0-387-23394-6_10
  66. Joshi K.D. Introduction to general topology. New Age International, 1983.
  67. Kelley J.L. General topology. Van Nostrand, New York, 1955.
  68. Khamsi M.A., Kirk W.A. An introduction to metric spaces and fixed point theory. John Wiley, New York, 2001.
  69. Kirk W., Shahzad N. Fixed point theory in distance spaces. Springer International Publishing, 2014. doi: 10.1007/978-3-319-10927-5
  70. Korselt A. Bemerkung zur algebra der logik. Math. Ann. 1894, 44 (1), 156-157. doi: 10.1007/BF01446978
  71. Krishnamurthy V. On the number of topologies on a finite set. The Amer. Math. Monthly 1966, 73 (2), 154-157.
  72. Kubrusly C.S. The elements of operator theory. Springer, 2001.
  73. Kubrusly C.S. The elements of operator theory. Birkhäuser, Basel, 2011. doi: 10.1007/978-0-8176-4998-2
  74. Laos N.K. Topics in mathematical analysis and differential geometry. In: Series in pure mathematics, 24. World Scientific, 1998.
  75. Leathem J.G. Volume and surface integrals used in physics. In: Cambridge Tracts in Mathematics and Mathematical Physics, 1. Cambridge University Press, 1905.
  76. Lin D. An information-theoretic definition of similarity. Proc. of the Internat. Conf. on Machine Learning 1998, 296-304.
  77. MacLane S., Birkhoff G. Algebra. AMS Chelsea Publishing, Providence, 1999.
  78. Maddux R.D. Relation algebras. In: Studies in logic and the foundations of mathematics, 150. Elsevier Science, 2006.
  79. Maligranda L. A simple proof of the Hölder and the Minkowski inequality. The Amer. Math. Monthly 1995, 102 (3), 256-259.
  80. Maligranda L., Orlicz W. On some properties of functions of generalized variation. Monatsh. Math. 1987, 104 (1), 53-65. doi: 10.1007/BF01540525
  81. McCarty G. Topology: An Introduction With Application to Topological Groups. McGraw-Hill Book Company, New York, 1967.
  82. Menger K. Untersuchungen über allgemeine metrik. Math. Ann. 1930, 103 (1), 466-501. doi: 10.1007/BF01455705
  83. Michel A.N., Herget C.J. Applied algebra and functional analysis. Dover Publications, 1993.
  84. Milovanović G.V., Milovanović I. On a generalization of certain results of A. Ostrowski and A. Lupaş. Publ. Elektrotehničkog Fakulteta 1979, (643/677), 62-69.
  85. Minkowski H. Geometrie der zahlen. Druck und Verlag von B.G. Teubner, Leipzig, 1910.
  86. Mitrinoviç D.S., Pečariç J.E., Fink A.M. Classical and new inequalities in analysis. In: Mathematics and its Applications, 61. Kluwer Academic Publishers, Dordrecht-Boston-London, 2010.
  87. Molchanov I.S. Theory of Random Sets. In: Probability and Its Applications. Springer-Verlag, London, 2005. doi: 10.1007/1-84628-150-4
  88. Mulholland H.P. On generalizations of minkowski's inequality in the form of a triangle inequality. Proc. London Math. Soc. 1949, s2-51 (1), 294-307. doi: 10.1112/plms/s2-51.4.294
  89. Munkres J.R. Topology. Prentice Hall, Upper Saddle River, NJ, 2000.
  90. Murdeshwar M.G. General topology. New Age International, 1990.
  91. Ore O. On the foundation of abstract algebra. II. Ann. of Math. (2) 1936, 36 (2), 265-292. doi: 10.2307/1968442
  92. Pap E. Null-additive set functions. In: Mathematics and Its Applications, 337. Kluwer Academic Publishers, 1995.
  93. Pečariç J.E., Proschan F., Tong Y.L. Convex functions, partial orderings and statistical applications. In: Mathematics in Science and Engineering, 187. Academic Press, San Diego, California, 1992.
  94. Ponnusamy S. Foundations of functional analysis. CRC Press, 2002.
  95. Rana I.K. An Introduction to measure and integration. In: Graduate Studies in Mathematics, 45. Amer. Math. Soc., Providence, R.I., 2002.
  96. Riesz F. Stetigkeitsbegriff und abstrakte mengenlehre. In: Castelnuovo G. (Eds.) Atti del IV Congresso Internazionale dei Matematici, Rome, Italy, 1909, Tipografia della R. Accademia dei Lincei, 18-24.
  97. Rosenlicht M. Introduction to analysis. Dover Publications, New York, 1968.
  98. Rudin W. Principles of mathematical analysis. McGraw-Hill, New York, 1976.
  99. Salzmann H., Grundhöfer T., Hähl H., Löwen R. The classical fields: structural features of the real and rational numbers. In: Encyclopedia of Mathematics and its Applications, 112. Cambridge University Press, 2007.
  100. Schweizer B., Sklar A. Probabilistic metric spaces. Elsevier Science Publishing, 1983.
  101. Searcóid M. Metric spaces. In: Springer Undergraduate Mathematics Series. Springer Science & Business Media, 2006.
  102. Sherstnev A.N. Random normed spaces. questions of completeness. Kazan. Gos. Univ. Uchen. Zap. 1962, 122 (4), 3-20.
  103. Simon B. Convexity: an analytic viewpoint. In: Cambridge Tracts in Mathematics, 187. Cambridge University Press, 2011.
  104. Sloane N.J.A. On-line encyclopedia of integer sequences. World Wide Web, 2014.
  105. Steen L.A., Seebach J.A. Counterexamples in topology. Springer-Verlag, 1978.
  106. Suppes P. Axiomatic Set Theory. Dover Publications, New York, 1972.
  107. Sutherland W.A. Introduction to metric and topological spaces. Oxford University Press, 1975.
  108. Szirmai J. The densest geodesic ball packing by a type of nil lattices. Beiträge Algebra Geom. 2007, 48 (2), 383-397.
  109. Thomson B.S., Bruckner A.M., Bruckner J.B. Elementary Real Analysis. Prentice Hall, 2001.
  110. Thron W.J. Topological structures. Holt, Rinehart and Winston, New York, 1966.
  111. Tietze H.F.F. Beiträge zur allgemeinen topologie. I. Math. Ann. 1923, 88 (3-4), 290-312. doi: 10.1007/BF01579182
  112. Tolsted E. An elementary derivation of Cauchy, Hölder and Minkowski inequalities from Young's inequality. Math. Mag. 1964, 37, 2-12, 1964.
  113. Vallin R.W. Continuity and differentiability aspects of metric preserving functions. Real Anal. Exchange 1999, 25 (2), 849-868.
  114. Veltkamp R.C. Shape matching: similarity measures and algorithms. Shape Modeling and Applications, SMI 2001 International Conference on 2001, 188-197. doi: 10.1109/SMA.2001.923389
  115. Veltkamp R.C., Hagedoorn M. Shape similarity measures, properties and constructions. In: Laurini R. (Eds.) Proc. 4th Intern. Conf. "VISUAL 2000", Lyon, France, November 2-4, 2000, Springer, Berlin-Heidelberg, Advances in Visual Information Systems, Lecture Notes in Computer Science, 1929. 467-476. doi: 10.1007/3-540-40053-2_41
  116. Vitányi P.M.B. Information distance in multiples. IEEE Transactions on Information Theory 2011, 57 (4), 2451-2456. doi: 10.1109/TIT.2011.2110130
  117. Walmsley C. An Introductory Course Of Mathematical Analysis. Cambridge University Press, 1920.
  118. Wilson W.A. On semi-metric spaces. Amer. J. Math. 1931, 53 (2), 361-373. doi: 10.2307/2370790
  119. Xia Q. The geodesic problem in quasimetric spaces. J. Geom. Anal. 2009, 19 (2), 452-479. doi: 10.1007/s12220-008-9065-4
  120. Young W.H. On classes of summable functions and their Fourier series. Proc. of the Royal Soc. of London, 87 (594), 225-229.
  121. Zorich V.A. Mathematical analysis. In: Universitext Series. Springer Science & Business Media, 2004.