References
-
Akimenko V.V., Nakonechnyi A.G., Trofimchuk O.Yu. An optimal control model for a system of degenerate parabolic integro-differential equations. Cybernet. Systems Anal. 2007, 43 (6), 838-847.
doi: 10.1007/s10559-007-0108-9 (translation of Kibernet. Sistem. Anal. 2007, 6, 90-102)
-
Bintz J., Finotti H., Lenhart S. Optimal control of resourse coefficient in a parabolic population model. In: Proc. of the Internat. Symp. on Math. and Comput. Biology ``Biomat 2013'', Singapure, 2013, 121-136.
-
Bokalo M.M. Dynamical problems without initial conditions for elliptic-parabolic equations in spatial unbounded domains. Electron. J. Diff. Eq. 2010, 2010 (178), 1-24.
-
Bokalo M.M. Optimal control of evolution systems without initial conditions. Visnyk of the Lviv University, Ser.: Mech. and Math. 2010, 73, 85-113.
-
Bokalo M.M. Optimal control problem for evolution systems without initial conditions. Nonlinear boundary problem 2010, 20, 14-27.
-
Bokalo M.M., Buhrii O.M., Mashiyev R.A. Unique solvability of initial-boundary-value problems for anisotropic elliptic-parabolic equations with variable exponents of nonlinearity. J. Nonl. Evol. Equ. Appl. 2014, 2013 (6), 67-87.
-
Bokalo M., Lorenzi A. Linear evolution first-order problems without initial conditions. Milan J. Math. 2009, 77, 437-494.
doi: 10.1007/s00032-009-0107-6
-
Boltyanskiy V.G. Mathematical methods of optimal control. Moscow, Nauka, 1969. (in Russian)
-
Evans L.C. Partial differential equations. In: Graduate Studies in Mathematics, 19. Amer. Math. Soc., Providence, RI, 2010.
-
Farag M.H. Computing optimal control with a quasilinear parabolic partial differential equation. Surv. Math. Appl. 2009, 4, 139-153.
-
Farag S.H., Farag M.H. On an optimal control problem for a quasilinear parabolic equation. Appl. Math. (Warsaw) 2000, 27 (2), 239-250.
-
Fattorini H.O. Optimal control problems for distributed parameter systems governed by semilinear parabolic equations in $L^1$ and $L^\infty$ spaces. Optimal Control of Partial Diff. Equ., Lecture Notes in Control and Inform. Sci. 1991, 149, 68-80.
-
Feiyue He, Leung A., Stojanovic S. Periodic Optimal Control for Parabolic Volterra-Lotka Type Equations. Math. Methods Appl. Sci. 1995, 18 (2), 127-146.
doi: 10.1002/mma.1670180204
-
Gayevskyy H., Greger K., Zaharias K. Nonlinear operator equations and operator differential equations. Mir, Moscow, 1978. (in Russian)
-
Khater A.H., Shamardanb A.B., Farag M.H., Abel-Hamida A.H. Analytical and numerical solutions of a quasilinear parabolic optimal control problem.
J. Comput. Appl. Math. 1998, 95 (1-2), 29-43.
doi: 10.1016/S0377-0427(98)00066-1
-
Lenhart S., Yong J. Optimal Control for Degenerate Parabolic Equations with Logistic Growth. IMA Preprint Ser. 1992, 1064.
-
Lions J.-L. Quelques méthodes de résolution des problémes aux limites non linéaires. Dunod Gauthier-Villars, Paris, 1969. (in France)
-
Lions J.-L. Optimal Control of Systems Gocerned by Partial Differentiul Equations. Springer, Berlin, 1971.
-
Lions J.-L. Operational differential equations and boundary value problems. Berlin-Heidelberg-New York, 1970.
-
Lou H. Optimality conditions for semilinear parabolic equations with controls in leading term. ESAIM: Control Optim. Calc. Var. 2011, 17 (4), 975-994.
-
Lu Z. Existence and uniqueness of second order parabolic bilinear optimal control problems. Lobachevskii J. Math. 2011, 32 (4), 320-327.
doi: 10.1134/S1995080211040135
-
Pukalskyi I. D. Nonlocal boundary-value problem with degeneration and optimal control problem for linear parabolic equations. J. Math. Sci. (New York) 2012, 184 (1), 19-35.
doi: 10.1007/s10958-012-0849-5 (translation of Matem. Metody ta Fiz.-Mekh. Polya 2011, 54 (2), 23-35. (in Ukrainian))
-
Showalter R.E. Monotone operators in Banach space and nonlinear partial differential equations. In: Mathematical Surveys and Monographs, 49. Amer. Math. Soc., Providence, RI, 1997.
-
Tagiev R.K. Existance and uniquiness of second order parabolic bilinear optimal control problems. Differ. Equ. 2013, 49 (3), 369-381.
doi: 10.1134/S0012266113030129 (translation of Differ. Uravn. 2013, 49 (3), 380-329. (in Russian))
-
Tagiyev R.K., Hashimov S.A. On optimal control of the coefficients of a parabolic equation involing phase constraints. Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerb. 2013, 38, 131-146.
-
Vlasenko L.A., Samoilenko A.M. Optimal control with impulsive component for systems described by implicit parabolic operator differential equations.
Ukrainian Math. J. 2009, 61 (8), 1250-1263.
doi: 10.1007/s11253-010-0274-1 (translation of Ukrain. Mat. Zh. 2009, 61 (8), 1053-1065. (in Ukrainian))