References
-
Albanese A.A. On the global $C^{\infty}$ and Gevrey hypoellipticity on the torus of some classes of degenerate elliptic operators. Note di Matematica 2011, 31 (1), 1-13.
doi: 10.1285/i15900932v31n1p1
-
Arnol'd V.I. Small denominators and problems of stability of motion in classical and celestial mechanics. Uspehi Mat. Nauk 1963, 18 (6), 91-192.
doi: 10.1070/RM1963v018n06ABEH001143
(in Russian)
-
Beresnevich V., Dodson M., Kristensen S., Levesley J. An inhomogeneous wave equation and non-linear Diophantine approximation. Advances in Mathematics 2008, 217 (2), 740-760.
doi: 10.1016/j.aim.2007.09.003
-
Bourghin D. G., Duffin R. J. The Dirichlet problem for the vibrating string equation. Bull. Amer. Math. Soc. 1939, 45 (12), 851-858.
doi: 10.1090/S0002-9904-1939-07103-6
-
Dickinson H., Gramchev T., Yoshino M. Perturbations of vector fields on tori: resonant normal forms and Diophantine phenomena. Proc. Edinb. Math. Soc. 2002, 45 (3), 731-759.
doi: 10.1017/S001309150000064X
-
Gramchev T., Yoshino M. WKB analysis to global solvability and hypoellipticity. Publ. Res. Inst. Math. Sci. 1995, 31 (3), 443-464.
doi: 10.2977/prims/1195164049
-
Grebennikov E.A, Ryabov Yu.A. Resonances and small denominators in celestial mechanics. Nauka, Moscow, 1978. (in Russian)
-
Greenfield S., Wallach N. Global hypoellipticity and Liouville numbers. Proc. Amer. Math. Soc. 1972, 31 (1), 112-114.
doi: 10.2307/2038523
-
Il'kiv V.S., Ptashnyk B.Yo. Problems for partial differential equations with nonlocal conditions. Metric approach to the problem of small denominators. Ukrainian Math. J. 2006, 58 (12), 1847-1875.
doi: 10.1007/s11253-006-0172-8
(in Ukrainian)
-
Kolmogorov A.N. On dynamical systems with an integral invariant on the torus. Doklady Akad. Nauk SSSR 1953, 93 (5), 763-766. (in Russian)
-
Kristensen S. Diophantine approximation and the solubility of the Schrodinger equation. Phys. Lett. A. 2003, 314 (1), 15-18.
doi: 10.1016/S0375-9601(03)00867-3
-
Novak B. Remark on periodic solutions of a linear wave equation in one dimension. Comm. Math. Uni. Carolinae 1974, 15, 513-519.
-
Petronilho G. Global hypoellipticity, global solvability and normal form for a class of real vector fields on a torus and application. Trans. Amer. Math. Soc. 2011, 363, 6337-6349.
doi: 10.1090/S0002-9947-2011-05359-6
-
Petronilho G. Global solvability and simultaneously approximable vectors. J. Differential Equations 2002, 184 (1), 48-61.
doi: 10.1006/jdeq.2001.4132
-
Polishchuk V.M., Ptashnyk B.Yo. Periodic boundary value problem for linear hyperbolic equations. Math.Methods Phys. Mech. Fields 1975, 5, 158-160. (in Russian)
-
Polishchuk V.M., Ptashnyk B.Yo. Periodic solutions of a system of partial differential equations with constant coefficients. Ukrainian Math. J. 1980, 32 (2), 239-243.
doi: 10.1007/BF01092793
(in Russian)
-
Ptashnyk B.Yo., Il'kiv V.S., Kmit' I.Ya., Polishchuk V.M. Nonlocal Boundary-Value Problems for Partial Differential Equations. Naukova Dumka, Kiev, 2002. (in Ukrainian)
-
Ptashnyk B.Yo. Periodic boundary value problem for linear hyperbolic equations with constant coefficients. In:Math. Physics, 12, 117-121. Naukova Dumka, Kiev, 1972. (in Russian)
-
Ptashnyk B.Yo. Ill-Posed Boundary-Value Problems for Partial Differential Equations. Naukova Dumka, Kiev, 1984. (in Russian)
-
Savka I.Ya. Nonlocal problem with dependent coefficients in conditions for the second-order equation in time variable. Carpathian Math. Publ. 2010, 2 (2), 101-110. (in Ukrainian)